84 resultados para Electricity in mining.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. Each agent has the knowledge about a different method for defining a strategy for playing in the market, the main agent chooses the best among all those, and provides it to the market player that requests, to be used in the market. This paper also presents a methodology to manage the efficiency/effectiveness balance of this method, to guarantee that the degradation of the simulator processing times takes the correct measure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The very particular characteristics of electricity markets, require deep studies of the interactions between the involved players. MASCEM is a market simulator developed to allow studying electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is implemented as a multiagent system, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. This paper also presents a methodology to define players’ models based on the historic of their past actions, interpreting how their choices are affected by past experience, and competition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multilevel negotiation mechanism for operating smart grids and negotiating in electricity markets considers the advantages of virtual power player management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power systems are planed and operated according to the optimization of the available resources. Traditionally these tasks were mostly undertaken in a centralized way which is no longer adequate in a competitive environment. Demand response can play a very relevant role in this context but adequate tools to negotiate this kind of resources are required. This paper presents an approach to deal with these issues, by using a multi-agent simulator able to model demand side players and simulate their strategic behavior. The paper includes an illustrative case study that considers an incident situation. The distribution company is able to reduce load curtailment due to load flexibility contracts previously established with demand side players.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competitive electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is an electricity market simulator able to model market players and simulate their operation in the market. As market players are complex entities, having their characteristics and objectives, making their decisions and interacting with other players, a multi-agent architecture is used and proved to be adequate. MASCEM players have learning capabilities and different risk preferences. They are able to refine their strategies according to their past experience (both real and simulated) and considering other agents’ behavior. Agents’ behavior is also subject to its risk preferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an agent-based simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, considering user risk preferences. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions. In the simulated market agents interact in several different ways and may joint together to form coalitions. In this paper we address multi-agent coalitions to analyse Distributed Generation in Electricity Markets

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.