79 resultados para Distribution power systems restoration
Resumo:
Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.
Resumo:
Multi-agent approaches have been widely used to model complex systems of distributed nature with a large amount of interactions between the involved entities. Power systems are a reference case, mainly due to the increasing use of distributed energy sources, largely based on renewable sources, which have potentiated huge changes in the power systems’ sector. Dealing with such a large scale integration of intermittent generation sources led to the emergence of several new players, as well as the development of new paradigms, such as the microgrid concept, and the evolution of demand response programs, which potentiate the active participation of consumers. This paper presents a multi-agent based simulation platform which models a microgrid environment, considering several different types of simulated players. These players interact with real physical installations, creating a realistic simulation environment with results that can be observed directly in the reality. A case study is presented considering players’ responses to a demand response event, resulting in an intelligent increase of consumption in order to face the wind generation surplus.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
Os Transformadores de potência são máquinas de elevada importância ao nível dos Sistemas Elétricos de Energia (SEE) uma vez que são estas máquinas que possibilitam a interligação dos diferentes níveis de tensão da rede e a transmissão de energia elétrica em Corrente Alternada (CA). Geralmente, estas máquinas são de grandes dimensões e de elevado nível de complexidade construtiva. Caracterizam-se por possuírem períodos de vida útil bastante elevados (vinte a trinta anos) e preços elevados, o que conduz a um nível de exigência de fiabilidade muito elevada, uma vez que não e viável a existência de muitos equipamentos de reserva nos SEE. Com o objetivo de tentar maximizar o período de vida útil dos transformadores de potência e a sua fiabilidade, tenta-se, cada vez mais, implementar conceitos de manutenção preventiva a este tipo de máquinas. No entanto, a gestão da sua vida útil e extremamente complexa na medida em que, estas máquinas têm vários componentes cruciais e suscetiveis de originar falhas e, quase todos eles, encontram-se no interior de uma cuba. Desta forma, não e possível obter uma imagem do seu estado, em tempo real, sem colocar o transformador fora de serviço, algo que acarreta custos elevados. Por este motivo, desenvolveu-se uma técnica que permite obter uma indicação do estado do transformador, em tempo real, sem o retirar de serviço, colhendo amostras do óleo isolante e procedendo a sua análise físico-química e Analise Gases Dissolvidos (DGA). As análises aos óleos isolantes tem vindo a adquirir uma preponderância muito elevada no diagnóstico de falhas e na analise do estado de conservação destes equipamentos tendo-se desenvolvido regras para interpretação dos parâmetros dos óleos com carácter normativo. Considerando o conhecimento relativo a interpretação dos ensaios físico-químicos e DGA ao oleol, e possível desenvolver ferramentas capazes de otimizar essas mesmas interpretações e aplicar esse conhecimento no sentido de prever a sua evolução, assim como o surgimento de possíveis falhas em transformadores, para assim otimizar os processos de manutenção. Neste campo as Redes Neuronais Artificiais (RNAs) têm um papel fundamental