99 resultados para Cognitive Radio Sensor Networks (CRSN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the significant amount of scientific work in Wireless Sensor Networks (WSNs), there is a clear lack of effective, feasible and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster abstract outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON relies on a hierarchical network architecture together with integrated middleware and command&control mechanisms. It has been designed to use standard commercially– available technologies, while maintaining as much flexibility as possible to meet specific applications’ requirements. The EMMON WSN architecture has been validated through extensive simulation and experimental evaluation, including through a 300+ node test-bed, the largest WSN test-bed in Europe to date

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Link quality estimation is a fundamental building block for the design of several different mechanisms and protocols in wireless sensor networks (WSN). A thorough experimental evaluation of link quality estimators (LQEs) is thus mandatory. Several WSN experimental testbeds have been designed ([1–4]) but only [3] and [2] targeted link quality measurements. However, these were exploited for analyzing low-power links characteristics rather than the performance of LQEs. Despite its importance, the experimental performance evaluation of LQEs remains an open problem, mainly due to the difficulty to provide a quantitative evaluation of their accuracy. This motivated us to build a benchmarking testbed for LQE - RadiaLE, which we present here as a demo. It includes (i.) hardware components that represent the WSN under test and (ii.) a software tool for the set up and control of the experiments and also for analyzing the collected data, allowing for LQEs evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperating objects (COs) is a recently coined term used to signify the convergence of classical embedded computer systems, wireless sensor networks and robotics and control. We present essential elements of a reference architecture for scalable data processing for the CO paradigm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ART-WiSe (Architecture for Real-Time communications in Wireless Sensor Networks) framework aims at the design of new communication architectures and mechanisms for time-sensitive Wireless Sensor Networks (WSNs). We adopted a two-tiered architecture where an overlay Wireless Local Area Network (Tier 2) serves as a backbone for a WSN (Tier 1), relying on existing standard communication protocols and commercial-off-the-shell (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. In this line, a test-bed application is being developed for assessing, validating and demonstrating the ART-WiSe architecture. A pursuit-evasion application was chosen since it fulfils a number of requirements, namely it is feasible and appealing and imposes some stress to the architecture in terms of timeliness. To develop the testbed based on the previously referred technologies, an implementation of the IEEE 8021.5.4/ZigBee protocols is being carried out, since there is no open source available to the community. This paper highlights some relevant aspects of the ART-WiSe architecture, provides some intuition on the protocol stack implementation and presents a general view over the envisaged test-bed application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes the development of a Test-bed Application for the ART-WiSe Framework with the aim of providing a means of access, validate and demonstrate that architecture. The chosen application is a kind of pursuit-evasion game where a remote controlled robot, navigating through an area covered by wireless sensor network (WSN), is detected and continuously tracked by the WSN. Then a centralized control station takes the appropriate actions for a pursuit robot to chase and “capture” the intruder one. This kind of application imposes stringent timing requirements to the underlying communication infrastructure. It also involves interesting research problems in WSNs like tracking, localization, cooperation between nodes, energy concerns and mobility. Additionally, it can be easily ported into a real-world application. Surveillance or search and rescue operations are two examples where this kind of functionality can be applied. This is still a first approach on the test-bed application and this development effort will be continuously pushed forward until all the envisaged objectives for the Art-WiSe architecture become accomplished.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos últimos anos, o avanço da tecnologia e a miniaturização de diversos componentes de electrónica associados a novos conceitos têm permitido nascer novas ideias e projectos, que até há alguns anos não passariam de ficção científica. Talvez o exemplo mais acabado seja actualmente o smartphone, um pequeno bloco de hardware e software, com capacidade de processamento que ultrapassa várias vezes o dos computadores com uma dúzia de anos. Estas capacidades têm sido utilizadas em comunicações, blocos de notas, agendas e até entretenimento. No entanto, podem ser reutilizadas para ajudar a resolver algumas limitações/constrangimentos da actualidade. Dentro destes destacam-se a gestão de recursos escassos. Com efeito, o consumo de energia eléctrica tem aumentado como consequência directa do desenvolvimento global e aumento do número de aparelhos eléctricos. Uma percentagem significativa de energia eléctrica tem sido produzida através de recursos não-renováveis de energia. No entanto, a dependência energética, associada à subida de preços e a redução das emissões de gases do efeito estufa, estimula o desenvolvimento de novas soluções que permitam lidar com esta situação. O desempenho energético por sua vez depende não só das características da estrutura, mas também do comportamento do utilizador. O desempenho energético dos edifícios é muito importante, uma vez que os respectivos consumos são responsáveis por mais de metade do total da energia produzida. Desta forma, a fim de alcançar um melhor desempenho é importante não só considerar o desempenho de estrutura, mas também monitorizar o comportamento do utilizador. Esta última questão coloca várias limitações, uma vez que depende muito do tipo de utilizador. Um dos conceitos actuais emergentes são as chamadas redes de sensores sem fio. Com esta tecnologia, pequenos módulos podem ser desenvolvidos com muitas possibilidades de conectividade, com elevado poder de processamento e com grande autonomia, sem serem excessivamente caros. Isto proporciona os meios para implementar vários dispositivos em toda a instalação, para recolher uma variedade de dados, sendo posteriormente armazenados num servidor. Os blocos fundamentais da infra-estrutura de sensores do projecto foram concebidos na Evoleo Technologies em simultâneo com o decorrer do estágio. Estes blocos recolhem dados específicos na instalação, e periodicamente enviam para o servidor central os valores recolhidos, onde são armazenados e colocados à disposição do utilizador. Os dados recolhidos podem então ser apresentados ao utilizador, proporcionando um registo de consumo de energia associado a um dado período de tempo. Uma vez que todos os dados são armazenados no servidor, podem ser efectuados estudos para determinar o uso típico, possíveis problemas em aparelhos, a qualidade da energia eléctrica, etc., permitindo determinar onde a energia está a ser eventualmente desperdiçada e fornecendo dados ao utilizador para que este possa proceder a alterações, tendo por base dados recolhidos num dado período. O objectivo principal deste trabalho passa por estabelecer a ligação entre o nível máquina e o nível de utilizador, isto é, uma plataforma de interacção entre dispositivos e administrador da instalação. Fornecer os dados de uma forma fácil e sem necessidade de instalação de software específico em cada dispositivo que se pretenda utilizar para monitorizar foi uma das principais preocupações das fases de concepção do projecto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, due to the widespread use of computers and the internet, students are trading libraries for the World Wide Web and laboratories with simulation programs. In most courses, simulators are made available to students and can be used to proof theoretical results or to test a developing hardware/product. Although this is an interesting solution: low cost, easy and fast way to perform some courses work, it has indeed major disadvantages. As everything is currently being done with/in a computer, the students are loosing the “feel” of the real values of the magnitudes. For instance in engineering studies, and mainly in the first years, students need to learn electronics, algorithmic, mathematics and physics. All of these areas can use numerical analysis software, simulation software or spreadsheets and in the majority of the cases data used is either simulated or random numbers, but real data could be used instead. For example, if a course uses numerical analysis software and needs a dataset, the students can learn to manipulate arrays. Also, when using the spreadsheets to build graphics, instead of using a random table, students could use a real dataset based, for instance, in the room temperature and its variation across the day. In this work we present a framework which uses a simple interface allowing it to be used by different courses where the computers are the teaching/learning process in order to give a more realistic feeling to students by using real data. A framework is proposed based on a set of low cost sensors for different physical magnitudes, e.g. temperature, light, wind speed, which are connected to a central server, that the students have access with an Ethernet protocol or are connected directly to the student computer/laptop. These sensors use the communication ports available such as: serial ports, parallel ports, Ethernet or Universal Serial Bus (USB). Since a central server is used, the students are encouraged to use sensor values results in their different courses and consequently in different types of software such as: numerical analysis tools, spreadsheets or simply inside any programming language when a dataset is needed. In order to do this, small pieces of hardware were developed containing at least one sensor using different types of computer communication. As long as the sensors are attached in a server connected to the internet, these tools can also be shared between different schools. This allows sensors that aren't available in a determined school to be used by getting the values from other places that are sharing them. Another remark is that students in the more advanced years and (theoretically) more know how, can use the courses that have some affinities with electronic development to build new sensor pieces and expand the framework further. The final solution provided is very interesting, low cost, simple to develop, allowing flexibility of resources by using the same materials in several courses bringing real world data into the students computer works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 6loWPAN (the light version of IPv6) and RPL (routing protocol for low-power and lossy links) protocols have become de facto standards for the Internet of Things (IoT). In this paper, we show that the two native algorithms that handle changes in network topology – the Trickle and Neighbor Discovery algorithms – behave in a reactive fashion and thus are not prepared for the dynamics inherent to nodes mobility. Many emerging and upcoming IoT application scenarios are expected to impose real-time and reliable mobile data collection, which are not compatible with the long message latency, high packet loss and high overhead exhibited by the native RPL/6loWPAN protocols. To solve this problem, we integrate a proactive hand-off mechanism (dubbed smart-HOP) within RPL, which is very simple, effective and backward compatible with the standard protocol. We show that this add-on halves the packet loss and reduces the hand-off delay dramatically to one tenth of a second, upon nodes’ mobility, with a sub-percent overhead. The smart-HOP algorithm has been implemented and integrated in the Contiki 6LoWPAN/RPL stack (source-code available on-line mrpl: smart-hop within rpl, 2014) and validated through extensive simulation and experimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vision of the Internet of Things (IoT) includes large and dense deployment of interconnected smart sensing and monitoring devices. This vast deployment necessitates collection and processing of large volume of measurement data. However, collecting all the measured data from individual devices on such a scale may be impractical and time consuming. Moreover, processing these measurements requires complex algorithms to extract useful information. Thus, it becomes imperative to devise distributed information processing mechanisms that identify application-specific features in a timely manner and with a low overhead. In this article, we present a feature extraction mechanism for dense networks that takes advantage of dominance-based medium access control (MAC) protocols to (i) efficiently obtain global extrema of the sensed quantities, (ii) extract local extrema, and (iii) detect the boundaries of events, by using simple transforms that nodes employ on their local data. We extend our results for a large dense network with multiple broadcast domains (MBD). We discuss and compare two approaches for addressing the challenges with MBD and we show through extensive evaluations that our proposed distributed MBD approach is fast and efficient at retrieving the most valuable measurements, independent of the number sensor nodes in the network.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Smart Cities are designed to be living systems and turn urban dwellers life more comfortable and interactive by keeping them aware of what surrounds them, while leaving a greener footprint. The Future Cities Project [1] aims to create infrastructures for research in smart cities including a vehicular network, the BusNet, and an environmental sensor platform, the Urban Sense. Vehicles within the BusNet are equipped with On Board Units (OBUs) that offer free Wi-Fi to passengers and devices near the street. The Urban Sense platform is composed by a set of Data Collection Units (DCUs) that include a set of sensors measuring environmental parameters such as air pollution, meteorology and noise. The Urban Sense platform is expanding and receptive to add new sensors to the platform. The parnership with companies like TNL were made and the need to monitor garbage street containers emerged as air pollution prevention. If refuse collection companies know prior to the refuse collection which route is the best to collect the maximum amount of garbage with the shortest path, they can reduce costs and pollution levels are lower, leaving behind a greener footprint. This dissertation work arises in the need to monitor the garbage street containers and integrate these sensors into an Urban Sense DCU. Due to the remote locations of the garbage street containers, a network extension to the vehicular network had to be created. This dissertation work also focus on the Multi-hop network designed to extend the vehicular network coverage area to the remote garbage street containers. In locations where garbage street containers have access to the vehicular network, Roadside Units (RSUs) or Access Points (APs), the Multi-hop network serves has a redundant path to send the data collected from DCUs to the Urban Sense cloud database. To plan this highly dynamic network, the Wi-Fi Planner Tool was developed. This tool allowed taking measurements on the field that led to an optimized location of the Multi-hop network nodes with the use of radio propagation models. This tool also allowed rendering a temperature-map style overlay for Google Earth [2] application. For the DCU for garbage street containers the parner company provided the access to a HUB (device that communicates with the sensor inside the garbage containers). The Future Cities use the Raspberry pi as a platform for the DCUs. To collect the data from the HUB a RS485 to RS232 converter was used at the physical level and the Modbus protocol at the application level. To determine the location and status of the vehicles whinin the vehicular network a TCP Server was developed. This application was developed for the OBUs providing the vehicle Global Positioning System (GPS) location as well as information of when the vehicle is stopped, moving, on idle or even its slope. To implement the Multi-hop network on the field some scripts were developed such as pingLED and “shark”. These scripts helped upon node deployment on the field as well as to perform all the tests on the network. Two setups were implemented on the field, an urban setup was implemented for a Multi-hop network coverage survey and a sub-urban setup was implemented to test the Multi-hop network routing protocols, Optimized Link State Routing Protocol (OLSR) and Babel.