94 resultados para Bluetooth Data Noise
Resumo:
O presente trabalho enquadra-se na temática de segurança contra incêndio em edifícios e consiste num estudo de caso de projeto de deteção e extinção de incêndio num Data Center. Os objetivos deste trabalho resumem-se à realização de um estudo sobre o estado da arte da extinção e deteção automática de incêndio, ao desenvolvimento de uma ferramenta de software de apoio a projetos de extinção por agentes gasosos, como também à realização de um estudo e uma análise da proteção contra incêndios em Data Centers. Por último foi efetuado um estudo de caso. São abordados os conceitos de fogo e de incêndio, em que um estudo teórico à temática foi desenvolvido, descrevendo de que forma pode o fogo ser originado e respetivas consequências. Os regulamentos nacionais relativos à Segurança Contra Incêndios em Edifícios (SCIE) são igualmente abordados, com especial foco nos Sistemas Automáticos de Deteção de Incêndio (SADI) e nos Sistemas Automáticos de Extinção de Incêndio (SAEI), as normas nacionais e internacionais relativas a esta temática também são mencionadas. Pelo facto de serem muito relevantes para o desenvolvimento deste trabalho, os sistemas de deteção de incêndio são exaustivamente abordados, mencionando características de equipamentos de deteção, técnicas mais utilizadas como também quais os aspetos a ter em consideração no dimensionamento de um SADI. Quanto aos meios de extinção de incêndio foram mencionados quais os mais utilizados atualmente, as suas vantagens e a que tipo de fogo se aplicam, com especial destaque para os SAEI com utilização de gases inertes, em que foi descrito como deve ser dimensionado um sistema deste tipo. Foi também efetuada a caracterização dos Data Centers para que seja possível entender quais as suas funcionalidades, a importância da sua existência e os aspetos gerais de uma proteção contra incêndio nestas instalações. Por último, um estudo de caso foi desenvolvido, um SADI foi projetado juntamente com um SAEI que utiliza azoto como gás de extinção. As escolhas e os sistemas escolhidos foram devidamente justificados, tendo em conta os regulamentos e normas em vigor.
Resumo:
São muitas as organizações que por todo o mundo possuem instalações deste tipo, em Portugal temos o exemplo da Portugal Telecom que recentemente inaugurou o seu Data Center na Covilhã. O desenvolvimento de um Data Center exige assim um projeto muito cuidado, o qual entre outros aspetos deverá garantir a segurança da informação e das próprias instalações, nomeadamente no que se refere à segurança contra incêndio.
Resumo:
In-network storage of data in wireless sensor networks contributes to reduce the communications inside the network and to favor data aggregation. In this paper, we consider the use of n out of m codes and data dispersal in combination to in-network storage. In particular, we provide an abstract model of in-network storage to show how n out of m codes can be used, and we discuss how this can be achieved in five cases of study. We also define a model aimed at evaluating the probability of correct data encoding and decoding, we exploit this model and simulations to show how, in the cases of study, the parameters of the n out of m codes and the network should be configured in order to achieve correct data coding and decoding with high probability.
Resumo:
Accepted in 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia 2015), Amsterdam, Netherlands.
Resumo:
In this manuscript we tackle the problem of semidistributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signalto-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs impact the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.
Resumo:
Nowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.
Resumo:
Complex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.
Resumo:
Currently, due to the widespread use of computers and the internet, students are trading libraries for the World Wide Web and laboratories with simulation programs. In most courses, simulators are made available to students and can be used to proof theoretical results or to test a developing hardware/product. Although this is an interesting solution: low cost, easy and fast way to perform some courses work, it has indeed major disadvantages. As everything is currently being done with/in a computer, the students are loosing the “feel” of the real values of the magnitudes. For instance in engineering studies, and mainly in the first years, students need to learn electronics, algorithmic, mathematics and physics. All of these areas can use numerical analysis software, simulation software or spreadsheets and in the majority of the cases data used is either simulated or random numbers, but real data could be used instead. For example, if a course uses numerical analysis software and needs a dataset, the students can learn to manipulate arrays. Also, when using the spreadsheets to build graphics, instead of using a random table, students could use a real dataset based, for instance, in the room temperature and its variation across the day. In this work we present a framework which uses a simple interface allowing it to be used by different courses where the computers are the teaching/learning process in order to give a more realistic feeling to students by using real data. A framework is proposed based on a set of low cost sensors for different physical magnitudes, e.g. temperature, light, wind speed, which are connected to a central server, that the students have access with an Ethernet protocol or are connected directly to the student computer/laptop. These sensors use the communication ports available such as: serial ports, parallel ports, Ethernet or Universal Serial Bus (USB). Since a central server is used, the students are encouraged to use sensor values results in their different courses and consequently in different types of software such as: numerical analysis tools, spreadsheets or simply inside any programming language when a dataset is needed. In order to do this, small pieces of hardware were developed containing at least one sensor using different types of computer communication. As long as the sensors are attached in a server connected to the internet, these tools can also be shared between different schools. This allows sensors that aren't available in a determined school to be used by getting the values from other places that are sharing them. Another remark is that students in the more advanced years and (theoretically) more know how, can use the courses that have some affinities with electronic development to build new sensor pieces and expand the framework further. The final solution provided is very interesting, low cost, simple to develop, allowing flexibility of resources by using the same materials in several courses bringing real world data into the students computer works.
Resumo:
Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.
Resumo:
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on short- time stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.
Resumo:
Smart Cities are designed to be living systems and turn urban dwellers life more comfortable and interactive by keeping them aware of what surrounds them, while leaving a greener footprint. The Future Cities Project [1] aims to create infrastructures for research in smart cities including a vehicular network, the BusNet, and an environmental sensor platform, the Urban Sense. Vehicles within the BusNet are equipped with On Board Units (OBUs) that offer free Wi-Fi to passengers and devices near the street. The Urban Sense platform is composed by a set of Data Collection Units (DCUs) that include a set of sensors measuring environmental parameters such as air pollution, meteorology and noise. The Urban Sense platform is expanding and receptive to add new sensors to the platform. The parnership with companies like TNL were made and the need to monitor garbage street containers emerged as air pollution prevention. If refuse collection companies know prior to the refuse collection which route is the best to collect the maximum amount of garbage with the shortest path, they can reduce costs and pollution levels are lower, leaving behind a greener footprint. This dissertation work arises in the need to monitor the garbage street containers and integrate these sensors into an Urban Sense DCU. Due to the remote locations of the garbage street containers, a network extension to the vehicular network had to be created. This dissertation work also focus on the Multi-hop network designed to extend the vehicular network coverage area to the remote garbage street containers. In locations where garbage street containers have access to the vehicular network, Roadside Units (RSUs) or Access Points (APs), the Multi-hop network serves has a redundant path to send the data collected from DCUs to the Urban Sense cloud database. To plan this highly dynamic network, the Wi-Fi Planner Tool was developed. This tool allowed taking measurements on the field that led to an optimized location of the Multi-hop network nodes with the use of radio propagation models. This tool also allowed rendering a temperature-map style overlay for Google Earth [2] application. For the DCU for garbage street containers the parner company provided the access to a HUB (device that communicates with the sensor inside the garbage containers). The Future Cities use the Raspberry pi as a platform for the DCUs. To collect the data from the HUB a RS485 to RS232 converter was used at the physical level and the Modbus protocol at the application level. To determine the location and status of the vehicles whinin the vehicular network a TCP Server was developed. This application was developed for the OBUs providing the vehicle Global Positioning System (GPS) location as well as information of when the vehicle is stopped, moving, on idle or even its slope. To implement the Multi-hop network on the field some scripts were developed such as pingLED and “shark”. These scripts helped upon node deployment on the field as well as to perform all the tests on the network. Two setups were implemented on the field, an urban setup was implemented for a Multi-hop network coverage survey and a sub-urban setup was implemented to test the Multi-hop network routing protocols, Optimized Link State Routing Protocol (OLSR) and Babel.
Resumo:
The Electromyography (EMG) is an important tool for gait analyzes and disorders diagnoses. Traditional methods involve equipment that can disturb the analyses, being gradually substituted by different approaches, like wearable and wireless systems. The cable replacement for autonomous systems demands for technologies capable of meeting the power constraints. This work presents the development of an EMG and kinematic data capture wireless module, designed taking into account power consumption issues. This module captures and converts the analog myoeletric signal to digital, synchronously with the capture of kinetic information. Both data are time multiplexed and sent to a PC via Bluetooth link. The work carried out comprised the development of the hardware, the firmware and a graphical interface running in an external PC. The hardware was developed using the PIC18F14K22, a low power family of microcontrollers. The link was established via Bluetooth, a protocol designed for low power communication. An application was also developed to recover and trace the signal to a Graphic User Interface (GUI), coordinating the message exchange with the firmware. Results were obtained which allowed validating the conceived system in static and with the subject performing short movements. Although it was not possible to perform the tests within more dynamic movements, it is shown that it is possible to capture, transmit and display the captured data as expected. Some suggestions to improve the system performance also were made.
Resumo:
With increasing technological innovation, the concept of marketing and its applications become more functional and wide. Today, we witness a steady growth in the development of mobile marketing campaigns, i.e., marketing campaigns targeting mobile devices (mobile phones, Smartphones, PDAs, tablets). Among the several mobile technologies available (Bluetooth networks, Wi-Fi, WAP, SMS service, MMS), Bluetooth seems to have the biggest potential for the least invasive consumer mobile marketing strategy. This study seeks to answer the question "what factors may motivate the Portuguese consumer to accept Bluetooth marketing?.“ We propose a conceptual model capable of investigating the relationships between the several responsiveness factors to Bluetooth marketing. The development of a set of hypotheses supported by an online questionnaire to a valid sample of 755 participants, demonstrates that there is a relationship between factors such as expanded knowledge of the technology, and Bluetooth marketing receptivity. Additionally, we find that the information value of mobile advertising messages, such as entertainment value and personalization, relates well to responsiveness. The ability to accept/dismiss promotional messages sent to mobile phones and other safety features also correlated well with Bluetooth marketing receptivity.
Resumo:
With the increasing technological innovation, the concept of marketing and its applications become more functional and wide. Today is visible the development of mobile marketing campaigns, ie marketing campaigns for mobile devices (mobile phones, smartphones, PDAs, tablets). Taking advantage of mobile devices services (bluetooth networks, Wi-Fi, WAP, SMS service, MMS) as a vehicle to approach and communicate with consumers, bluetooth technology is a potential way of mobile marketing to become increasingly less invasive to consumers. This study seeks to answer the question "what factors may motivate the Portuguese consumer to adopt the bluetooth marketing?". According to the literature review on the concept of mobile marketing, bluetooth marketing and consumer behaviour theories, we propose a conceptual model capable of investigating the relationships between the determinants of responsiveness to bluetooth marketing. The empirical study developed from a set of hypotheses and implementation of an online questionnaire to a sample of 755 respondents, demonstrated that there is a relationship between factors such as, technology ease of use, file exchanging and influence of peers, and the receptivity to bluetooth marketing. Also information value of mobile advertising messages, such as entertainment and personalization relates to responsiveness. The consumer’s perceived control over mobile promotional messages and the safety features of the technology, also showed a positive relationship with the receptivity to bluetooth marketing.