91 resultados para user-centered approach
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
The Robuter is a robotic mobile platform that is located in the “Hands-On” Laboratory of the IPP-Hurray! Research Group, at the School of Engineering of the Polytechnic Institute of Porto. Recently, the Robuter was subject of an upgrading process addressing two essential areas: the Hardware Architecture and the Software Architecture. This upgrade in process was triggered due to technical problems on-board of the robot and also to the fact that the hardware/software architecture has become obsolete. This Technical Report overviews the most important aspects of the new Hardware and Software Architectures of the Robuter. This document also presents a first approach on the first steps towards the use of the Robuter platform, and provides some hints on future work that may be carried out using this mobile platform.
Resumo:
In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.
Resumo:
For industrial environments it is true that Ethernet technologies are there to stay. In fact, a number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor applications. Fullduplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional field bus networks? Fieldbus fundamentalists often argue that the two things are not comparable. In fact, Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. Where are the higher layers and the application enablers that permit building real industrial applications? And, taking for free that they are available, what is the impact of those protocols, mechanisms and application models on the overall performance of Ethernet-based distributed factory-floor applications?
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
In the past few years the so-called gadgets like cellular phones, personal data assistants and digital cameras are more widespread even with less technological aware users. However, for several reasons, the factory-floor itself seems to be hermetic to this changes ... After the fieldbus revolution, the factory-floor has seen an increased use of more and more powerful programmable logic controllers and user interfaces but the way they are used remains almost the same. We believe that new user-computer interaction techniques including multimedia and augmented rcaliry combined with now affordable technologies like wearable computers and wireless networks can change the way the factory personal works together with the roachines and the information system on the factory-floor. This new age is already starting with innovative uses of communication networks on the factory-floor either using "standard" networks or enhancing industrial networks with multimedia and wireless capabilities.
Resumo:
This paper proposes a new architecture targeting real-time and reliable Distributed Computer-Controlled Systems (DCCS). This architecture provides a structured approach for the integration of soft and/or hard real-time applications with Commercial O -The-Shelf (COTS) components. The Timely Computing Base model is used as the reference model to deal with the heterogeneity of system components with respect to guaranteeing the timeliness of applications. The reliability and availability requirements of hard real-time applications are guaranteed by a software-based fault-tolerance approach.
Resumo:
Field communication systems (fieldbuses) are widely used as the communication support for distributed computer-controlled systems (DCCS) within all sort of process control and manufacturing applications. There are several advantages in the use of fieldbuses as a replacement for the traditional point-to-point links between sensors/actuators and computer-based control systems, within which the most relevant is the decentralisation and distribution of the processing power over the field. A widely used fieldbus is the WorldFIP, which is normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important issue is “how to guarantee the timing requirements of the real-time traffic?” WorldFIP has very interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic and aperiodic traffic. In this paper, we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the timing requirements of the real-time traffic.
Resumo:
In this paper we address the real-time capabilities of P-NET, which is a multi-master fieldbus standard based on a virtual token passing scheme. We show how P-NET’s medium access control (MAC) protocol is able to guarantee a bounded access time to message requests. We then propose a model for implementing fixed prioritybased dispatching mechanisms at each master’s application level. In this way, we diminish the impact of the first-come-first-served (FCFS) policy that P-NET uses at the data link layer. The proposed model rises several issues well known within the real-time systems community: message release jitter; pre-run-time schedulability analysis in non pre-emptive contexts; non-independence of tasks at the application level. We identify these issues in the proposed model and show how results available for priority-based task dispatching can be adapted to encompass priority-based message dispatching in P-NET networks.
Resumo:
This paper describes how MPEG-4 object based video (obv) can be used to allow selected objects to be inserted into the play-out stream to a specific user based on a profile derived for that user. The application scenario described here is for personalized product placement, and considers the value of this application in the current and evolving commercial media distribution market given the huge emphasis media distributors are currently placing on targeted advertising. This level of application of video content requires a sophisticated content description and metadata system (e.g., MPEG-7). The scenario considers the requirement for global libraries to provide the objects to be inserted into the streams. The paper then considers the commercial trading of objects between the libraries, video service providers, advertising agencies and other parties involved in the service. Consequently a brokerage of video objects is proposed based on negotiation and trading using intelligent agents representing the various parties. The proposed Media Brokerage Platform is a multi-agent system structured in two layers. In the top layer, there is a collection of coarse grain agents representing the real world players – the providers and deliverers of media contents and the market regulator profiler – and, in the bottom layer, there is a set of finer grain agents constituting the marketplace – the delegate agents and the market agent. For knowledge representation (domain, strategic and negotiation protocols) we propose a Semantic Web approach based on ontologies. The media components contents should be represented in MPEG-7 and the metadata describing the objects to be traded should follow a specific ontology. The top layer content providers and deliverers are modelled by intelligent autonomous agents that express their will to transact – buy or sell – media components by registering at a service registry. The market regulator profiler creates, according to the selected profile, a market agent, which, in turn, checks the service registry for potential trading partners for a given component and invites them for the marketplace. The subsequent negotiation and actual transaction is performed by delegate agents in accordance with their profiles and the predefined rules of the market.
Resumo:
Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix.
Resumo:
Para obtenção do grau de Doutor pela Universidade de Vigo com menção internacional Departamento de Informática
Resumo:
This paper studies the Fermi-Pasta-Ulam problem having in mind the generalization provided by Fractional Calculus (FC). The study starts by addressing the classical formulation, based on the standard integer order differential calculus and evaluates the time and frequency responses. A first generalization to be investigated consists in the direct replacement of the springs by fractional elements of the dissipative type. It is observed that the responses settle rapidly and no relevant phenomena occur. A second approach consists of replacing the springs by a blend of energy extracting and energy inserting elements of symmetrical fractional order with amplitude modulated by quadratic terms. The numerical results reveal a response close to chaotic behaviour.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
With progressing CMOS technology miniaturization, the leakage power consumption starts to dominate the dynamic power consumption. The recent technology trends have equipped the modern embedded processors with the several sleep states and reduced their overhead (energy/time) of the sleep transition. The dynamic voltage frequency scaling (DVFS) potential to save energy is diminishing due to efficient (low overhead) sleep states and increased static (leakage) power consumption. The state-of-the-art research on static power reduction at system level is based on assumptions that cannot easily be integrated into practical systems. We propose a novel enhanced race-to-halt approach (ERTH) to reduce the overall system energy consumption. The exhaustive simulations demonstrate the effectiveness of our approach showing an improvement of up to 8 % over an existing work.