67 resultados para hybrid algorithm
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
This work presents a hybrid maneuver for gradient search with multiple AUV's. The mission consists in following a gradient field in order to locate the source of a hydrothermal vent or underwater freshwater source. The formation gradient search exploits the environment structuring by the phenomena to be studied. The ingredients for coordination are the payload data collected by each vehicle and their knowledge of the behaviour of other vehicles and detected formation distortions.
Resumo:
Die Luftverschmutzung, die globale Erwärmung sowie die Verknappung der endlichen Ressourcen sind die größten Bedenken der vergangenen Jahrzehnte. Die Nachfrage nach jeglicher Mobilität steigt rapide. Dementsprechend bemüht ist die Automobilindustrie Lösungen für Mobilität unter dem Aspekt der Nachhaltigkeit und dem Umweltschutz anzubieten. Die Elektrifizierung hat sich hierbei als der beste Weg herausgestellt, um die Umweltprobleme sowie die Abhängigkeit von fossilen Brennstoffen zu lösen. Diese Arbeit soll einen Einblick über die Umweltauswirkungen des Hybridfahrzeuges Toyota Prius geben. Hierbei findet eine Gliederung in vier verschiedene Lebensphasen statt. Im Anschluss bietet die Sachbilanz die Möglichkeit die Umweltauswirkungen mit verschiedenen Antriebsmöglichkeiten und Brennstoffen zu vergleichen. Das Modell hat gezeigt, dass der Toyota Prius während der Nutzung einen hohen Einfluss auf das Treibhauspotenzial aufweist. Durch die Nutzung anderer Brennstoffe, wie beispielsweise Ethanol oder Methanol lassen sich die Auswirkungen am Treibhauspotenzial sowie der Verbrauch an abiotischen Ressourcen reduzieren. Vergleicht man die Elektromobilität mit der konventionellen, so ist festzustellen, dass diese Art der Mobilität die derzeit beste Möglichkeit zur Reduzierung der Umweltbelastungen bietet. Die Auswirkungen der Elektromobilität sind im hohen Maße abhängig von der Art des verwendeten Strommixes.
Resumo:
The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.