63 resultados para differential observing response
Resumo:
Demand response is assumed as an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets and of the increasing use of renewable-based energy sources. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed in this paper aims the minimization of the operation costs in a distribution network operated by a virtual power player that manages the available energy resources focusing on hour ahead re-scheduling. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs. Real time pricing is also applied. The proposed model is especially useful when actual and day ahead wind forecast differ significantly. Its application is illustrated in this paper implementing the characteristics of a real resources conditions scenario in a 33 bus distribution network with 32 consumers and 66 distributed generators.
Resumo:
Demand response has gain increasing importance in the context of competitive electricity markets environment. The use of demand resources is also advantageous in the context of smart grid operation. In addition to the need of new business models for integrating demand response, adequate methods are necessary for an accurate determination of the consumers’ performance evaluation after the participation in a demand response event. The present paper makes a comparison between some of the existing baseline methods related to the consumers’ performance evaluation, comparing the results obtained with these methods and also with a method proposed by the authors of the paper. A case study demonstrates the application of the referred methods to real consumption data belonging to a consumer connected to a distribution network.
Resumo:
The aggregation and management of Distributed Energy Resources (DERs) by an Virtual Power Players (VPP) is an important task in a smart grid context. The Energy Resource Management (ERM) of theses DERs can become a hard and complex optimization problem. The large integration of several DERs, including Electric Vehicles (EVs), may lead to a scenario in which the VPP needs several hours to have a solution for the ERM problem. This is the reason why it is necessary to use metaheuristic methodologies to come up with a good solution with a reasonable amount of time. The presented paper proposes a Simulated Annealing (SA) approach to determine the ERM considering an intensive use of DERs, mainly EVs. In this paper, the possibility to apply Demand Response (DR) programs to the EVs is considered. Moreover, a trip reduce DR program is implemented. The SA methodology is tested on a 32-bus distribution network with 2000 EVs, and the SA results are compared with a deterministic technique and particle swarm optimization results.