91 resultados para data capture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motor dysfunction is consistently reported but understudied in schizophrenia. It has been hypothesized that this abnormality may reflect a neuro-developmental disorder underlying this illness. The main goal of this study was to analyze movement patterns used by participants with schizophrenia and healthy controls during overarm throwing performance, using a markerless motion capture system. Thirteen schizophrenia patients and 16 healthy control patients performed the overarm throwing task in a markerless motion capture system. Participants were also examined for the presence of motor neurological soft signs (mNSS) using the Brief Motor Scale. Schizophrenia patients demonstrated a less developed movement pattern with low individualization of components compared to healthy controls. The schizophrenia group also displayed a higher incidence of mNSS. The presence of a less mature movement pattern can be an indicator of neuro-immaturity and a marker for atypical neurological development in schizophrenia. Our findings support the understanding of motor dysfunction as an intrinsic part of the disorder of schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study identifies predictors and normative data for quality of life (QOL) in a sample of Portuguese adults from general population. A cross-sectional correlational study was undertaken with two hundred and fifty-five (N = 255) individuals from Portuguese general population (mean age 43 years, range 25–84 years; 148 females, 107 males). Participants completed the European Portuguese version of the World Health Organization Quality of Life short-form instrument and the European Portuguese version of the Center for Epidemiologic Studies Depression Scale. Demographic information was also collected. Portuguese adults reported their QOL as good. The physical, psychological and environmental domains predicted 44 % of the variance of QOL. The strongest predictor was the physical domain and the weakest was social relationships. Age, educational level, socioeconomic status and emotional status were significantly correlated with QOL and explained 25 % of the variance of QOL. The strongest predictor of QOL was emotional status followed by education and age. QOL was significantly different according to: marital status; living place (mainland or islands); type of cohabitants; occupation; health. The sample of adults from general Portuguese population reported high levels of QOL. The life domain that better explained QOL was the physical domain. Among other variables, emotional status best predicted QOL. Further variables influenced overall QOL. These findings inform our understanding on adults from Portuguese general population QOL and can be helpful for researchers and practitioners using this assessment tool to compare their results with normative data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets worldwide suffered profound transformations. The privatization of previously nationally owned systems; the deregulation of privately owned systems that were regulated; and the strong interconnection of national systems, are some examples of such transformations [1, 2]. In general, competitive environments, as is the case of electricity markets, require good decision-support tools to assist players in their decisions. Relevant research is being undertaken in this field, namely concerning player modeling and simulation, strategic bidding and decision-support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric power networks, namely distribution networks, have been suffering several changes during the last years due to changes in the power systems operation, towards the implementation of smart grids. Several approaches to the operation of the resources have been introduced, as the case of demand response, making use of the new capabilities of the smart grids. In the initial levels of the smart grids implementation reduced amounts of data are generated, namely consumption data. The methodology proposed in the present paper makes use of demand response consumers’ performance evaluation methods to determine the expected consumption for a given consumer. Then, potential commercial losses are identified using monthly historic consumption data. Real consumption data is used in the case study to demonstrate the application of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constante evolução da tecnologia permitiu ao ser humano a utilização de dispositivos electrónicos nas suas rotinas diárias. Estas podem ser afetadas quando os utilizadores sofrem de deficiências ou doenças que afetam as suas capacidades motoras. Com o intuito de minimizar este obstáculo surgiram as Interfaces Homem-Computador (HCI). É neste panorama que os sistemas HCI baseados em Eletroculografia (EOG) assumem um papel preponderante na melhoria da qualidade de vida destes indivíduos. A Eletroculografia é o resultado da aquisição do movimento ocular, que pode ser adquirido através de diversos métodos. Os métodos mais convencionais utilizam elétrodos de superfície para aquisição dos sinais elétricos, ou então, utilizam sistemas de gravação de vídeo, que gravam o movimento ocular. O objetivo desta tese é desenvolver um sistema HCI baseado em Eletroculografia, que adquire o sinal elétrico do movimento ocular através de elétrodos de superfície. Para tal desenvolveu-se um circuito eletrónico para a aquisição do sinal de EOG, bem como um algoritmo em Python para análise do mesmo. O circuito foi desenvolvido recorrendo a seis módulos diferentes, cada um deles com uma função específica. Para cada módulo foi necessário desenhar e implementar placas de circuito impresso, que quando conectadas entre si permitem filtrar, amplificar e digitalizar os sinais elétricos, adquiridos através de elétrodos de superfície, originados pelo movimento ocular. O algoritmo criado em Python permite analisar os dados provenientes do circuito e converte-os para coordenadas. Através destas foi possível determinar o sentido e a amplitude do movimento ocular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harnessing idle PCs CPU cycles, storage space and other resources of networked computers to collaborative are mainly fixated on for all major grid computing research projects. Most of the university computers labs are occupied with the high puissant desktop PC nowadays. It is plausible to notice that most of the time machines are lying idle or wasting their computing power without utilizing in felicitous ways. However, for intricate quandaries and for analyzing astronomically immense amounts of data, sizably voluminous computational resources are required. For such quandaries, one may run the analysis algorithms in very puissant and expensive computers, which reduces the number of users that can afford such data analysis tasks. Instead of utilizing single expensive machines, distributed computing systems, offers the possibility of utilizing a set of much less expensive machines to do the same task. BOINC and Condor projects have been prosperously utilized for solving authentic scientific research works around the world at a low cost. In this work the main goal is to explore both distributed computing to implement, Condor and BOINC, and utilize their potency to harness the ideal PCs resources for the academic researchers to utilize in their research work. In this thesis, Data mining tasks have been performed in implementation of several machine learning algorithms on the distributed computing environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho enquadra-se na temática de segurança contra incêndio em edifícios e consiste num estudo de caso de projeto de deteção e extinção de incêndio num Data Center. Os objetivos deste trabalho resumem-se à realização de um estudo sobre o estado da arte da extinção e deteção automática de incêndio, ao desenvolvimento de uma ferramenta de software de apoio a projetos de extinção por agentes gasosos, como também à realização de um estudo e uma análise da proteção contra incêndios em Data Centers. Por último foi efetuado um estudo de caso. São abordados os conceitos de fogo e de incêndio, em que um estudo teórico à temática foi desenvolvido, descrevendo de que forma pode o fogo ser originado e respetivas consequências. Os regulamentos nacionais relativos à Segurança Contra Incêndios em Edifícios (SCIE) são igualmente abordados, com especial foco nos Sistemas Automáticos de Deteção de Incêndio (SADI) e nos Sistemas Automáticos de Extinção de Incêndio (SAEI), as normas nacionais e internacionais relativas a esta temática também são mencionadas. Pelo facto de serem muito relevantes para o desenvolvimento deste trabalho, os sistemas de deteção de incêndio são exaustivamente abordados, mencionando características de equipamentos de deteção, técnicas mais utilizadas como também quais os aspetos a ter em consideração no dimensionamento de um SADI. Quanto aos meios de extinção de incêndio foram mencionados quais os mais utilizados atualmente, as suas vantagens e a que tipo de fogo se aplicam, com especial destaque para os SAEI com utilização de gases inertes, em que foi descrito como deve ser dimensionado um sistema deste tipo. Foi também efetuada a caracterização dos Data Centers para que seja possível entender quais as suas funcionalidades, a importância da sua existência e os aspetos gerais de uma proteção contra incêndio nestas instalações. Por último, um estudo de caso foi desenvolvido, um SADI foi projetado juntamente com um SAEI que utiliza azoto como gás de extinção. As escolhas e os sistemas escolhidos foram devidamente justificados, tendo em conta os regulamentos e normas em vigor.