77 resultados para carbon fibre reinforced plastics
Resumo:
This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.
Resumo:
In this work, a repair technique with adhesively bonded carbon-epoxy patches is proposed for wood members damaged by horizontal shear and under bending loads. This damage is characterized by horizontal crack growth near the neutral plane of the wood beam, normally originating from checks and shakes. The repair consists of adhesively bonded carbon-epoxy patches on the vertical side faces of the beam at the cracked region to block sliding between the beam arms. An experimental and numerical parametric analysis was performed on the patch length. The numerical analysis used the finite element method (FEM) and cohesive zone models (CZMs), with an inverse modelling technique for the characterization of the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the adhesive used. To fully reproduce the tests, horizontal damage propagation within the wood beam was also simulated. A good correlation with the experiments was found. Regarding the effectiveness of the repair, for the conditions selected for this work, a full strength recovery was achieved for the bigger value of patch length tested.
Resumo:
In this work, a comparative study on different drill point geometries and feed rate for composite laminates drilling is presented. For this goal, thrust force monitoring during drilling, hole wall roughness measurement and delamination extension assessment after drilling is accomplished. Delamination is evaluated using enhanced radiography combined with a dedicated computational platform that integrates algorithms of image processing and analysis. An experimental procedure was planned and consequences were evaluated. Results show that a cautious combination of the factors involved, like drill tip geometry or feed rate, can promote the reduction of delamination damage.
Resumo:
The widespread employment of carbon-epoxy laminates in high responsibility and severely loaded applications introduces an issue regarding their handling after damage. Repair of these structures should be evaluated, instead of their disposal, for cost saving and ecological purposes. Under this perspective, the availability of efficient repair methods is essential to restore the strength of the structure. The development and validation of accurate predictive tools for the repairs behaviour are also extremely important, allowing the reduction of costs and time associated to extensive test programmes. Comparing with strap repairs, scarf repairs have the advantages of a higher efficiency and the absence of aerodynamic disturbance. This work reports on a numerical study of the tensile behaviour of three-dimensional scarf repairs in carbon-epoxy structures, using a ductile adhesive (Araldite® 2015). The finite elements analysis was performed in ABAQUS® and Cohesive Zone Modelling was used for the simulation of damage onset and growth in the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the specific adhesive mentioned. A parametric study was performed on the repair width and scarf angle. The use of over-laminating plies covering the repaired region at the outer or both repair surfaces was also tested as an attempt to increase the repairs efficiency. The obtained results allowed the proposal of design principles for repairing composite structures.
Resumo:
The mode III interlaminar fracture of carbon/epoxy laminates was evaluated with the edge crack torsion (ECT) test. Three-dimensional finite element analyses were performed in order to select two specimen geometries and an experimental data reduction scheme. Test results showed considerable non-linearity before the maximum load point and a significant R-curve effect. These features prevented an accurate definition of the initiation point. Nevertheless, analyses of non-linearity zones showed two likely initiation points corresponding to GIIIc values between 850 and 1100 J/m2 for both specimen geometries. Although any of these values is realistic, the range is too broad, thus showing the limitations of the ECT test and the need for further research.
Resumo:
Ao longo dos anos as estruturas existentes têm sido adaptadas para novas utilizações. No entanto, devido aos condicionalismos arquitetónicos e patrimoniais, a demolição e substituição por estruturas novas, pode-se tornar pouco viável, sendo cada vez mais exequível a opção de reforçar. A presente dissertação refere-se a uma dessas opções de reforço nomeadamente ao reforço de estruturas em betão armado com CFRP (Compósitos Reforçados com Fibras de Carbono), nomeadamente lajes e vigas. Os objetivos principais deste trabalho consistem em desenvolver uma proposta de critérios de dimensionamento de estruturas de betão armado reforçadas com CFRP tendo por base o disposto no Eurocódigo 2 comparando -a com o relatório técnico publicado “bulletin 14 - Externally bonded FRP reinforcement for RC structures”, da Fédération Internationale du Béton. Recorrendo à revisão bibliográfica, onde estão referidos temas como as características dos materiais de um sistema FRP, as suas técnicas de reforço e com uma exposição do comportamento das vigas reforçadas à flexão, particularmente no seu comportamento mecânico e modos de ruína associados a este tipo de reforço. Apresentam-se duas metodologias de cálculo para dimensionamento deste tipo de reforço para os diferentes estados limites, e aplicam-se a cada uma das metodologias de cálculo a uma viga com necessidade de reforço à flexão e ao corte, devido a um aumento de esforços provocado pelo aumento da sobrecarga. Desenvolve-se um estudo experimental onde se pretende avaliar a eficácia de um sistema de reforço à flexão com compósitos de CFRP colado externamente a uma viga e com diferentes taxas de reforço.
Resumo:
In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.
Resumo:
A novel sensitive electrochemical sensor was developed by electropolymerization of pyrrole(PY)and molecularly imprinted polymer (MIP)which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using cyclic voltammetry in the presence of Trimethoprim (TMP) as template molecules. Furthermore,a previous electrode modification was performed by deposition of a suspension of graphene on the electrode's surface. The performance of the imprinted and non-imprinted (NIP) films was evaluated by impedance spectroscopy (EIS) and cyclic voltammetry (CV) of a ferric solution. The molecularly imprinted film exhibited a high selectivity and sensitivity toward TMP. The sensor presented a linear range, between peak current intensity and logarithm of TMP concentration between 1.0x10-6 and 1.0x10-4 M. The results were accurate (with recoveries higher than 94%), precise (with standard deviations less than 5%) and the detection limit was 1.3x10-7 M. The new sensor is selective, simple to construct and easy to operate. The MIP sensor was successfully applied to quantify TMP in urinesamples.
Resumo:
A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.
Resumo:
In this work tubular fiber reinforced specimens are tested for fatigue life. The specimens are biaxially loaded with tension and shear stresses, with a load angle β of 30° and 60° and a load ratio of R=0,1. There are many factors that affect fatigue life of a fiber reinforced material and the main goal of this work is to study the effects of load ratio R by obtaining S-N curves and compare them to the previous works (1). All the other parameters, such as specimen production, fatigue loading frequency and temperature, will be the same as for the previous tests. For every specimen, stiffness, temperature of the specimen during testing, crack counting and final fracture mode are obtained. Prior to testing, a study if the literature regarding the load ratio effects on composites fatigue life and with that review estimate the initial stresses to be applied in testing. In previous works (1) similar specimens have only been tested for a load ratio of R=-1 and therefore the behaviour of this tubular specimens for a different load ratio is unknown. All the data acquired will be analysed and compared to the previous works, emphasizing the differences found and discussing the possible explanations for those differences. The crack counting software, developed at the institute, has shown useful before, however different adjustments to the software parameters lead to different cracks numbers for the same picture, and therefore a better methodology will be discussed to improve the crack counting results. After the specimen’s failure, all the data will be collected and stored and fibre volume content for every specimen is also determinate. The number of tests required to make the S-N curves are obtained according to the existent standards. Additionally are also identified some improvements to the testing machine setup and to the procedures for future testing.
Resumo:
Selenium modified ruthenium electrocatalysts supported on carbon black were synthesized using NaBH4 reduction of the metal precursor. Prepared Ru/C electrocatalysts showed high dispersion and very small averaged particle size. These Ru/C electrocatalysts were subsequently modified with Se following two procedures: (a) preformed Ru/carbon catalyst was mixed with SeO2 in xylene and reduced in H2 and (b) Ru metal precursor was mixed with SeO2 followed by reduction with NaBH4. The XRD patterns indicate that a pyrite-type structure was obtained at higher annealing temperatures, regardless of the Ru:Se molar ratio used in the preparation step. A pyrite-type structure also emerged in samples that were not calcined; however, in this case, the pyrite-type structure was only prominent for samples with higher Ru:Se ratios. The characterization of the RuSe/C electrocatalysts suggested that the Se in noncalcined samples was present mainly as an amorphous skin. Preliminary study of activity toward oxygen reduction reaction (ORR) using electrocatalysts with a Ru:Se ratio of 1:0.7 indicated that annealing after modification with Se had a detrimental effect on their activity. This result could be related to the increased particle size of crystalline RuSe2 in heat-treated samples. Higher activity of not annealed RuSe/C catalysts could also be a result of the structure containing amorphous Se skin on the Ru crystal. The electrode obtained using not calcined RuSe showed a very promising performance with a slightly lower activity and higher overpotential in comparison with a commercial Pt/C electrode. Single wall carbon nanohorns (SWNH) were considered for application as ORR electrocatalysts' supports. The characterization of SWNH was carried out regarding their tolerance toward strong catalyzed corrosion conditions. Tests indicated that SWNH have a three times higher electrochemical surface area (ESA) loss than carbon black or Pt commercial electrodes.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
Microcystin-LR (MC-LR) is a dangerous toxin found in environmental waters, quantified by high performance liquid chromatography and/or enzyme-linked immunosorbent assays. Quick, low cost and on-site analysis is thus required to ensure human safety and wide screening programs. This work proposes label-free potentiometric sensors made of solid-contact electrodes coated with a surface imprinted polymer on the surface of Multi-Walled Carbon NanoTubes (CNTs) incorporated in a polyvinyl chloride membrane. The imprinting effect was checked by using non-imprinted materials. The MC-LR sensitive sensors were evaluated, characterized and applied successfully in spiked environmental waters. The presented method offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.
Resumo:
A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.