119 resultados para Wireless Sensor Networks (WSN)
Resumo:
Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take sensor readings but individual sensor readings are not very important. It is important however to compute aggregated quantities of these sensor readings. The minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. We propose an algorithm for computing the min or max of sensor reading in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.
Resumo:
With the emergence of low-power wireless hardware new ways of communication were needed. In order to standardize the communication between these low powered devices the Internet Engineering Task Force (IETF) released the 6LoWPAN stand- ard that acts as an additional layer for making the IPv6 link layer suitable for the lower-power and lossy networks. In the same way, IPv6 Routing Protocol for Low- Power and Lossy Networks (RPL) has been proposed by the IETF Routing Over Low power and Lossy networks (ROLL) Working Group as a standard routing protocol for IPv6 routing in low-power wireless sensor networks. The research performed in this thesis uses these technologies to implement a mobility process. Mobility management is a fundamental yet challenging area in low-power wireless networks. There are applications that require mobile nodes to exchange data with a xed infrastructure with quality-of-service guarantees. A prime example of these applications is the monitoring of patients in real-time. In these scenarios, broadcast- ing data to all access points (APs) within range may not be a valid option due to the energy consumption, data storage and complexity requirements. An alternative and e cient option is to allow mobile nodes to perform hand-o s. Hand-o mechanisms have been well studied in cellular and ad-hoc networks. However, low-power wireless networks pose a new set of challenges. On one hand, simpler radios and constrained resources ask for simpler hand-o schemes. On the other hand, the shorter coverage and higher variability of low-power links require a careful tuning of the hand-o parameters. In this work, we tackle the problem of integrating smart-HOP within a standard protocol, speci cally RPL. The simulation results in Cooja indicate that the pro- posed scheme minimizes the hand-o delay and the total network overhead. The standard RPL protocol is simply unable to provide a reliable mobility support sim- ilar to other COTS technologies. Instead, they support joining and leaving of nodes, with very low responsiveness in the existence of physical mobility.
Resumo:
Hand-off (or hand-over), the process where mobile nodes select the best access point available to transfer data, has been well studied in wireless networks. The performance of a hand-off process depends on the specific characteristics of the wireless links. In the case of low-power wireless networks, hand-off decisions must be carefully taken by considering the unique properties of inexpensive low-power radios. This paper addresses the design, implementation and evaluation of smart-HOP, a hand-off mechanism tailored for low-power wireless networks. This work has three main contributions. First, it formulates the hard hand-off process for low-power networks (such as typical wireless sensor networks - WSNs) with a probabilistic model, to investigate the impact of the most relevant channel parameters through an analytical approach. Second, it confirms the probabilistic model through simulation and further elaborates on the impact of several hand-off parameters. Third, it fine-tunes the most relevant hand-off parameters via an extended set of experiments, in a realistic experimental scenario. The evaluation shows that smart-HOP performs well in the transitional region while achieving more than 98 percent relative delivery ratio and hand-off delays in the order of a few tens of a milliseconds.
Resumo:
Radio link quality estimation is essential for protocols and mechanisms such as routing, mobility management and localization, particularly for low-power wireless networks such as wireless sensor networks. Commodity Link Quality Estimators (LQEs), e.g. PRR, RNP, ETX, four-bit and RSSI, can only provide a partial characterization of links as they ignore several link properties such as channel quality and stability. In this paper, we propose F-LQE (Fuzzy Link Quality Estimator, a holistic metric that estimates link quality on the basis of four link quality properties—packet delivery, asymmetry, stability, and channel quality—that are expressed and combined using Fuzzy Logic. We demonstrate through an extensive experimental analysis that F-LQE is more reliable than existing estimators (e.g., PRR, WMEWMA, ETX, RNP, and four-bit) as it provides a finer grain link classification. It is also more stable as it has lower coefficient of variation of link estimates. Importantly, we evaluate the impact of F-LQE on the performance of tree routing, specifically the CTP (Collection Tree Protocol). For this purpose, we adapted F-LQE to build a new routing metric for CTP, which we dubbed as F-LQE/RM. Extensive experimental results obtained with state-of-the-art widely used test-beds show that F-LQE/RM improves significantly CTP routing performance over four-bit (the default LQE of CTP) and ETX (another popular LQE). F-LQE/RM improves the end-to-end packet delivery by up to 16%, reduces the number of packet retransmissions by up to 32%, reduces the Hop count by up to 4%, and improves the topology stability by up to 47%.
Resumo:
12th European Conference on Wireless Sensor Networks (EWSN 2015). 9 to 11, Feb, 2015. Porto, Portugal
Resumo:
Advances in networking and information technologies are transforming factory-floor communication systems into a mainstream activity within industrial automation. It is now recognized that future industrial computer systems will be intimately tied to real-time computing and to communication technologies. For this vision to succeed, complex heterogeneous factory-floor communication networks (including mobile/wireless components) need to function in a predictable, flawless, efficient and interoperable way. In this paper we re-visit the issue of supporting real-time communications in hybrid wired/wireless fieldbus-based networks, bringing into it some experimental results obtained in the framework of the RFieldbus ISEP pilot.
Resumo:
The marriage of emerging information technologies with control technologies is a major driving force that, in the context of the factory-floor, is creating an enormous eagerness for extending the capabilities of currently available fieldbus networks to cover functionalities not considered up to a recent past. Providing wireless capabilities to such type of communication networks is a big share of that effort. The RFieldbus European project is just one example, where PROFIBUS was provided with suitable extensions for implementing hybrid wired/wireless communication systems. In RFieldbus, interoperability between wired and wireless components is achieved by the use specific intermediate networking systems operating as repeaters, thus creating a single logical ring (SLR) network. The main advantage of the SLR approach is that the effort for protocol extensions is not significant. However, a multiple logical ring (MLR) approach provides traffic and error isolation between different network segments. This concept was introduced in, where an approach for a bridge-based architecture was briefly outlined. This paper will focus on the details of the inter-Domain Protocol (IDP), which is responsible for handling transactions between different network domains (wired or wireless) running the PROFIBUS protocol.
Resumo:
Fieldbus networks are becoming increasingly popular in industrial computer-controlled systems. More recently, there has been the desire to extend the capabilities of fieldbuses to cover functionalities not previously considered in such networks, with particular emphasis on industrial wireless communications. Thinking about wireless means considering hybrid wired/wireless solutions capable of interoperating with legacy (wired) systems. One possible solution is to use intermediate systems (IS) acting as repeaters to interconnect the wired and wireless parts. In contrast, we analyze a solution where intermediate systems are implemented as bridges/routers. We detail the main advantages in terms of dependability and timeliness, and propose mechanisms to manage message transactions and intercell mobility.
Resumo:
Determining the response time of message transactions is one of the major concerns in the design of any distributed computer-controlled system. Such response time is mainly dependent on the medium access delay, the message length and the transmission delay. While the medium access delay in fieldbus networks has been thoroughly studied in the last few years, the transmission delay has been almost ignored as it is considered that it can be neglected when compared to the length of the message itself. Nevertheless, this assumption is no longer valid when considering the case of hybrid wired/wireless fieldbus networks, where the transmission delay through a series of different mediums can be several orders of magnitude longer than the length of the message itself. In this paper, we show how to compute the duration of message transactions in hybrid wired/wireless fieldbus networks. This duration is mainly dependent on the duration of the request and response frames and on the number and type of physical mediums that the frames must cross between initiator and responder. A case study of a hybrid wired/wireless fieldbus network is also presented, where it becomes clear the interest of the proposed approach
Resumo:
Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix.
Resumo:
This paper addresses sensor network applications which need to obtain an accurate image of physical phenomena and do so with a high sampling rate in both time and space. We present a fast and scalable approach for obtaining an approximate representation of all sensor readings at high sampling rate for quickly reacting to critical events in a physical environment. This approach is an improvement on previous work in that after the new approach has undergone a startup phase then the new approach can use a very small sampling period.
Resumo:
Significant research efforts are being devoted to Body Area Networks (BAN) due to their potential for revolutionizing healthcare practices. Energy-efficiency and communication reliability are critically important for these networks. In an experimental study with three different mote platforms, we show that changes in human body shadowing as well as those in the relative distance and orientation of nodes caused by the common human body movements can result in significant fluctuations in the received signal strength within a BAN. Furthermore, regular movements, such as walking, typically manifest in approximately periodic variations in signal strength. We present an algorithm that predicts the signal strength peaks and evaluate it on real-world data. We present the design of an opportunistic MAC protocol, named BANMAC, that takes advantage of the periodic fluctuations of the signal strength to achieve high reliability even with low transmission power.
Resumo:
In spite of the significant amount of scientific work in Wireless Sensor Networks (WSNs), there is a clear lack of effective, feasible and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster abstract outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON relies on a hierarchical network architecture together with integrated middleware and command&control mechanisms. It has been designed to use standard commercially– available technologies, while maintaining as much flexibility as possible to meet specific applications’ requirements. The EMMON WSN architecture has been validated through extensive simulation and experimental evaluation, including through a 300+ node test-bed, the largest WSN test-bed in Europe to date
Resumo:
Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under worst-case conditions and to make the appropriate design choices. In that direction this paper contributes with an analytical methodology for modeling cluster-tree WSNs where the data sink can either be static or mobile. We assess the validity and pessimism of analytical model by comparing the worst-case results with the values measured through an experimental test-bed based on Commercial-Off- The-Shelf (COTS) technologies, namely TelosB motes running TinyOS.
Resumo:
The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.