70 resultados para Simplex. CPLEXR. Parallel Efficiency. Parallel Scalability. Linear Programming
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Euromicro Conference on Digital System Design (DSD 2015), Funchal, Portugal.
Resumo:
6th Real-Time Scheduling Open Problems Seminar (RTSOPS 2015), Lund, Sweden.
Resumo:
The 30th ACM/SIGAPP Symposium On Applied Computing (SAC 2015). 13 to 17, Apr, 2015, Embedded Systems. Salamanca, Spain.
Resumo:
Paper/Poster presented in Work in Progress Session, 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 26, Mar, 2015. Porto, Portugal.
Resumo:
Poster presented in Work in Progress Session, 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 26, Mar, 2015. Porto, Portugal.
Resumo:
Presented at INForum - Simpósio de Informática (INFORUM 2015). 7 to 8, Sep, 2015. Portugal.
Resumo:
The recent technological advancements and market trends are causing an interesting phenomenon towards the convergence of High-Performance Computing (HPC) and Embedded Computing (EC) domains. On one side, new kinds of HPC applications are being required by markets needing huge amounts of information to be processed within a bounded amount of time. On the other side, EC systems are increasingly concerned with providing higher performance in real-time, challenging the performance capabilities of current architectures. The advent of next-generation many-core embedded platforms has the chance of intercepting this converging need for predictable high-performance, allowing HPC and EC applications to be executed on efficient and powerful heterogeneous architectures integrating general-purpose processors with many-core computing fabrics. To this end, it is of paramount importance to develop new techniques for exploiting the massively parallel computation capabilities of such platforms in a predictable way. P-SOCRATES will tackle this important challenge by merging leading research groups from the HPC and EC communities. The time-criticality and parallelisation challenges common to both areas will be addressed by proposing an integrated framework for executing workload-intensive applications with real-time requirements on top of next-generation commercial-off-the-shelf (COTS) platforms based on many-core accelerated architectures. The project will investigate new HPC techniques that fulfil real-time requirements. The main sources of indeterminism will be identified, proposing efficient mapping and scheduling algorithms, along with the associated timing and schedulability analysis, to guarantee the real-time and performance requirements of the applications.
Resumo:
As plataformas com múltiplos núcleos tornaram a programação paralela/concorrente num tópico de interesse geral. Diversos modelos de programação têm vindo a ser propostos, facilitando aos programadores a identificação de regiões de código potencialmente paralelizáveis, deixando ao sistema operativo a tarefa de as escalonar dinamicamente em tempo de execução, explorando o maior grau possível de paralelismo. O Java não foge a esta tendência, disponibilizando ao programador um número crescente de bibliotecas de mecanismos de sincronização e paralelização de código. Neste contexto, esta tese apresenta e discute um conjunto de resultados obtidos através de testes intensivos à eficiência de algoritmos de ordenação implementados com recurso aos mecanismos de concorrência da API do Java 8 (Threads, Threadpools, ExecutorService, CountdownLach, ExecutorCompletionService e ForkJoinPools) em sistemas com um número de núcleos variável. Para cada um dos mecanismos, são apresentadas conclusões sobre o seu funcionamento e discutidos os cenários em que o seu uso pode ser rentabilizado de modo a serem obtidos melhores tempos de execução.