75 resultados para PER method
Resumo:
This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.
Resumo:
A low-cost disposable was developed for rapid detection of the protein biomarker myoglobin (Myo) as a model analyte. A screen printed electrode was modified with a molecularly imprinted material grafted on a graphite support and incorporated in a matrix composed of poly(vinyl chloride) and the plasticizer o-nitrophenyloctyl ether. The protein-imprinted material (PIM) was produced by growing a reticulated polymer around a protein template. This is followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl methacrylate hydrochloride, and ethylene glycol dimethacrylate. The polymeric layer was then covalently bound to the graphitic support, and Myo was added during the imprinting stage to act as a template. Non-imprinted control materials (CM) were also prepared by omitting the Myo template. Morphological and structural analysis of PIM and CM by FTIR, Raman, and SEM/EDC microscopies confirmed the modification of the graphite support. The analytical performance of the SPE was assessed by square wave voltammetry. The average limit of detection is 0.79 μg of Myo per mL, and the slope is −0.193 ± 0.006 μA per decade. The SPE-CM cannot detect such low levels of Myo but gives a linear response at above 7.2 μg · mL−1, with a slope of −0.719 ± 0.02 μA per decade. Interference studies with hemoglobin, bovine serum albumin, creatinine, and sodium chloride demonstrated good selectivity for Myo. The method was successfully applied to the determination of Myo urine and is conceived to be a promising tool for screening Myo in point-of-care patients with ischemia.
Resumo:
The total antioxidant capacity (TAC) of 28 flavoured water samples was assessed by ferric reducing antioxidant potential (FRAP), oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC) and total reactive antioxidant potential (TRAP) methods. It was observed that flavoured waters had higher antioxidant activity than the corresponding natural ones. The observed differences were attributed to flavours, juice and vitamins. Generally, higher TAC contents were obtained on lemon waters and lower values on guava and raspberry flavoured waters. Lower and higher TACs were obtained by TRAP and ORAC method, respectively. Statistical analysis suggested that vitamins and flavours increased the antioxidant content of the commercial waters.
Resumo:
The present work reports new sensors for the direct determination of Microcystin-LR (MC-LR) in environmental waters. Both selective membrane and solid contact were optimized to ensure suitable analytical features in potentiometric transduction. The sensing layer consisted of Imprinted Sol–Gel (ISG) materials capable of establishing surface interactions with MC-LR. Non-Imprinted Sol–Gel (NISG) membranes were used as negative control. The effects of an ionic lipophilic additive, time of sol–gel polymerization, time of extraction of MC-LR from the sensitive layer, and pH were also studied. The solid contact was made of carbon, aluminium, titanium, copper or nickel/chromium alloys (80 : 20 or 90 : 10). The best ISG sensor had a carbon solid contact and displayed average slopes of 211.3 mV per decade, with detection limits of 7.3 1010 M, corresponding to 0.75 mg L1 . It showed linear responses in the range of 7.7 1010 to 1.9 109 M of MC-LR (corresponding to 0.77–2.00 mg L1 ), thus including the limiting value for MC-LR in waters (1.0 mg L1 ). The potentiometric-selectivity coefficients were assessed by the matched potential method for ionic species regularly found in waters up to their limiting levels. Chloride (Cl) showed limited interference while aluminium (Al3+), ammonium (NH4 + ), magnesium (Mg2+), manganese (Mn2+), sodium (Na+ ), and sulfate (SO4 2) were unable to cause the required potential change. Spiked solutions were tested with the proposed sensor. The relative errors and standard deviation obtained confirmed the accuracy and precision of the method. It also offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.
Resumo:
We are presenting a simple, low-cost and rapid solid-state optical probe for screening chlorpromazine (CPZ) in aquacultures. The method exploits the colourimetric reaction between CPZ and Fe(III) ion that occurs at a solid/liquid interface, the solid layer consisting of ferric iron entrapped in a layer of plasticized PVC. If solutions containing CPZ are dropped onto such a layer, a colour change occurs from light yellow to dark pink or even light blue, depending on the concentration of CPZ. Visual inspection enables the concentration of CPZ to be estimated. The resulting colouration was also monitored by digital image collection for a more accurate quantification. The three coordinates of the hue, saturation and lightness system were obtained by standard image processing along with mathematical data treatment. The parameters affecting colour were assessed and optimized. Studies were conducted by visible spectrophotometry and digital image acquisition, respectively. The response of the optimized probe towards the concentration of CPZ was tested for several mathematical transformations of the colour coordinates, and a linear relation was found for the sum of hue and luminosity. The limit of detection is 50 μM (corresponding to about 16 μg per mL). The probe enables quick screening for CPZ in real water samples with prior sample treatment.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
This paper examines modern economic growth according to the multidimensional scaling (MDS) method and state space portrait (SSP) analysis. Electing GDP per capita as the main indicator for economic growth and prosperity, the long-run perspective from 1870 to 2010 identifies the main similarities among 34 world partners’ modern economic growth and exemplifies the historical waving mechanics of the largest world economy, the USA. MDS reveals two main clusters among the European countries and their old offshore territories, and SSP identifies the Great Depression as a mild challenge to the American global performance, when compared to the Second World War and the 2008 crisis.
Resumo:
In the present paper we consider a differentiated Stackelberg model, when the leader firm engages in an R&D process that gives an endogenous cost-reducing innovation. The aim is to study the licensing of the cost-reduction by a per-unit royalty and a fixed-fee. We analyse the implications of these types of licensing contracts over the R&D effort, the profits of the firms, the consumer surplus and the social welfare. By using comparative static analysis, we conclude that the degree of the differentiation of the goods plays an important role in the results.
Resumo:
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.
Resumo:
Sorption is commonly agreed to be the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, there is still a scarcity of studies focusing on spatial variability at the field scale in particular. In order to investigate the variation in the field of phenanthrene sorption, bulk topsoil samples were taken in a 15 × 15-m grid from the plough layer in two sandy loam fields with different texture and organic carbon (OC) contents (140 samples in total). Batch experiments were performed using the adsorption method. Values for the partition coefficient K d (L kg−1) and the organic carbon partition coefficient K OC (L kg−1) agreed with the most frequently used models for PAH partitioning, as OC revealed a higher affinity for sorption. More complex models using different OC compartments, such as non-complexed organic carbon (NCOC) and complexed organic carbon (COC) separately, performed better than single K OC models, particularly for a subset including samples with Dexter n < 10 and OC <0.04 kg kg−1. The selected threshold revealed that K OC-based models proved to be applicable for more organic fields, while two-component models proved to be more accurate for the prediction of K d and retardation factor (R) for less organic soils. Moreover, OC did not fully reflect the changes in phenanthrene retardation in the field with lower OC content (Faardrup). Bulk density and available water content influenced the phenanthrene transport mechanism phenomenon.
Resumo:
Potentiometric detection with homemade polymeric membrane microelectrodes was coupled to a magnetic sandwich immunoassay for Salmonella typhimurium determination. Cadmium and sodium ion selective electrodes were used respectively as indicator and pseudo-reference electrodes and were prepared in pipette tips to allow potentiometric measurements in microliter sample volumes. In the proposed method, the concentration of S. typhimurium was proportional to the amount of cadmium released upon dissolution of a CdS nanoparticle labeled to the secondary detection antibody. The limit of detection was 2 cells per 100 μL. The immunomagnetic assay with potentiometric detection is suitable for sensitive and rapid (average total time per assay of 75 minutes) detection of S. typhimurium in milk samples. The proposed method is easy to perform, safe, sensitive, and low cost and has potential for in situ analysis.
Resumo:
Carbamate compounds are an important group of cholinesterase inhibitors. There is a need for creating awareness regarding the risks of the inadequate carbamate use in the residential areas due to potential adverse human effects. Carbaryl is a commonly used pesticide worldwide. A simple, fast, and high throughput method was developed employing liquid chromatography with fluorescence detector to determine carbaryl residues in rat feces. The extraction was performed by using a rapid, easy, cheap, effective, reliable, and safe (QuEChERS) method, using acetonitrile as the extracting solvent. The parameters for the performance of the extraction method were optimized, such as ratio of mass of sample per volume of extraction solvent, QuEChERS content, and cleanup columns. Linear response was obtained for all calibration curves (solven and matrix-matched) over the established concentration range (5 500 mg/L) with a correlation coefficients higher than 0.999. The achieved recovery was 97.9% with relative standard deviation values of 1.1% (n D 4) at 167 mg/kg fortified concentration level and the limits of detection and quantification were 27.7 and 92.3 mg/kg respectively.
Resumo:
In this study a citrate-buffered version of QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for determination of 14 organochlorine pesticides (OCPs) residues in tamarind peel, fruit and commercial pulp was optimized using gas chromatography (GC) coupled with electron-capture detector (ECD) and confirmation by GC tandem mass spectrometry (GC–MS/MS). Five procedures were tested based on the original QuEChERS method. The best one was achieved with increased time in ultrasonic bath. For the extract clean-up, primary secondary amine (PSA), octadecyl-bonded silica (C18) and magnesium sulphate (MgSO4) were used as sorbents for tamarind fruit and commercial pulp and for peel was also added graphitized carbon black (GCB). The samples mass was optimized according to the best recoveries (1.0 g for peel and fruit; 0.5 g for pulp). The method results showed the matrix-matched calibration curve linearity was r2 > 0.99 for all target analytes in all samples. The overall average recoveries (spiked at 20, 40 and 60 μg kg−1) have been considered satisfactory presenting values between 70 and 115% with RSD of 2–15 % (n = 3) for all analytes, with the exception of HCB (in peel sample). The ranges of limits of detection (LOD) and quantification (LOQ) for OCPs were for peel (LOD: 8.0–21 μg kg−1; LOQ: 27–98 μg kg−1); for fruit (LOD: 4–10 μg kg−1; LOQ: 15–49 μg kg−1) and for commercial pulp (LOD: 2–5 μg kg−1; LOQ: 7–27 μg kg−1). The method was successfully applied in tamarind samples being considered a rapid, sensitive and reliable procedure.
Resumo:
Objective Public health organizations recommend that preschool-aged children accumulate at least 3 h of physical activity (PA) daily. Objective monitoring using pedometers offers an opportunity to measure preschooler's PA and assess compliance with this recommendation. The purpose of this study was to derive step-based recommendations consistent with the 3 h PA recommendation for preschool-aged children. Method The study sample comprised 916 preschool-aged children, aged 3 to 6 years (mean age = 5.0 ± 0.8 years). Children were recruited from kindergartens located in Portugal, between 2009 and 2013. Children wore an ActiGraph GT1M accelerometer that measured PA intensity and steps per day simultaneously over a 7-day monitoring period. Receiver operating characteristic (ROC) curve analysis was used to identify the daily step count threshold associated with meeting the daily 3 hour PA recommendation. Results A significant correlation was observed between minutes of total PA and steps per day (r = 0.76, p < 0.001). The optimal step count for ≥ 3 h of total PA was 9099 steps per day (sensitivity (90%) and specificity (66%)) with area under the ROC curve = 0.86 (95% CI: 0.84 to 0.88). Conclusion Preschool-aged children who accumulate less than 9000 steps per day may be considered Insufficiently Active.
Resumo:
A new iterative algorithm based on the inexact-restoration (IR) approach combined with the filter strategy to solve nonlinear constrained optimization problems is presented. The high level algorithm is suggested by Gonzaga et al. (SIAM J. Optim. 14:646–669, 2003) but not yet implement—the internal algorithms are not proposed. The filter, a new concept introduced by Fletcher and Leyffer (Math. Program. Ser. A 91:239–269, 2002), replaces the merit function avoiding the penalty parameter estimation and the difficulties related to the nondifferentiability. In the IR approach two independent phases are performed in each iteration, the feasibility and the optimality phases. The line search filter is combined with the first one phase to generate a “more feasible” point, and then it is used in the optimality phase to reach an “optimal” point. Numerical experiences with a collection of AMPL problems and a performance comparison with IPOPT are provided.