106 resultados para Distributed artificial intelligence - multiagent systems
Resumo:
Technology is present in almost every simple aspect of the people’s daily life. As an instance, let us refer to the smartphone. This device is usually equipped with a GPS modulewhich may be used as an orientation system, if it carries the right functionalities. The problem is that these applications may be complex to operate and may not be within the bounds of everybody. Therefore, the main goal here is to develop an orientation system that may help people with cognitive disabilities in their day-to-day journeys, when the caregivers are absent. On the other hand, to keep paid helpers aware of the current location of the disable people, it will be also considered a localization system. Knowing their current locations, caregiversmay engage in others activities without neglecting their prime work, and, at the same time, turning people with cognitive disabilities more independent.
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.
Resumo:
The power systems operation in the smart grid context increases significantly the complexity of their management. New approaches for ancillary services procurement are essential to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. These approaches should include market mechanisms which allow the participation of small and medium distributed energy resources players in a competitive market environment. In this paper, an energy and ancillary services joint market model used by an aggregator is proposed, considering bids of several types of distributed energy resources. In order to improve economic efficiency in the market, ancillary services cascading market mechanism is also considered in the model. The proposed model is included in MASCEM – a multi-agent system electricity market simulator. A case study considering a distribution network with high penetration of distributed energy resources is presented.
Resumo:
Artificial Intelligence has been applied to dynamic games for many years. The ultimate goal is creating responses in virtual entities that display human-like reasoning in the definition of their behaviors. However, virtual entities that can be mistaken for real persons are yet very far from being fully achieved. This paper presents an adaptive learning based methodology for the definition of players’ profiles, with the purpose of supporting decisions of virtual entities. The proposed methodology is based on reinforcement learning algorithms, which are responsible for choosing, along the time, with the gathering of experience, the most appropriate from a set of different learning approaches. These learning approaches have very distinct natures, from mathematical to artificial intelligence and data analysis methodologies, so that the methodology is prepared for very distinct situations. This way it is equipped with a variety of tools that individually can be useful for each encountered situation. The proposed methodology is tested firstly on two simpler computer versus human player games: the rock-paper-scissors game, and a penalty-shootout simulation. Finally, the methodology is applied to the definition of action profiles of electricity market players; players that compete in a dynamic game-wise environment, in which the main goal is the achievement of the highest possible profits in the market.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.
Resumo:
The implementation of competitive electricity markets has changed the consumers’ and distributed generation position power systems operation. The use of distributed generation and the participation in demand response programs, namely in smart grids, bring several advantages for consumers, aggregators, and system operators. The present paper proposes a remuneration structure for aggregated distributed generation and demand response resources. A virtual power player aggregates all the resources. The resources are aggregated in a certain number of clusters, each one corresponding to a distinct tariff group, according to the economic impact of the resulting remuneration tariff. The determined tariffs are intended to be used for several months. The aggregator can define the periodicity of the tariffs definition. The case study in this paper includes 218 consumers, and 66 distributed generation units.
Resumo:
The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.
Resumo:
4th International Conference, SIMPAR 2014, Bergamo, Italy, October 20-23, 2014
Resumo:
It is imperative to accept that failures can and will occur, even in meticulously designed distributed systems, and design proper measures to counter those failures. Passive replication minimises resource consumption by only activating redundant replicas in case of failures, as typically providing and applying state updates is less resource demanding than requesting execution. However, most existing solutions for passive fault tolerance are usually designed and configured at design time, explicitly and statically identifying the most critical components and their number of replicas, lacking the needed flexibility to handle the runtime dynamics of distributed component-based embedded systems. This paper proposes a cost-effective adaptive fault tolerance solution with a significant lower overhead compared to a strict active redundancy-based approach, achieving a high error coverage with the minimum amount of redundancy. The activation of passive replicas is coordinated through a feedback-based coordination model that reduces the complexity of the needed interactions among components until a new collective global service solution is determined, improving the overall maintainability and robustness of the system.
Resumo:
Contextualization is critical in every decision making process. Adequate responses to problems depend not only on the variables with direct influence on the outcomes, but also on a correct contextualization of the problem regarding the surrounding environment. Electricity markets are dynamic environments with increasing complexity, potentiated by the last decades' restructuring process. Dealing with the growing complexity and competitiveness in this sector brought the need for using decision support tools. A solid example is MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), whose players' decisions are supported by another multiagent system – ALBidS (Adaptive Learning strategic Bidding System). ALBidS uses artificial intelligence techniques to endow market players with adaptive learning capabilities that allow them to achieve the best possible results in market negotiations. This paper studies the influence of context awareness in the decision making process of agents acting in electricity markets. A context analysis mechanism is proposed, considering important characteristics of each negotiation period, so that negotiating agents can adapt their acting strategies to different contexts. The main conclusion is that context-dependant responses improve the decision making process. Suiting actions to different contexts allows adapting the behaviour of negotiating entities to different circumstances, resulting in profitable outcomes.
Resumo:
This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.
Resumo:
Neste documento, são investigados vários métodos usados na inteligência artificial, com o objetivo de obter previsões precisas da evolução dos mercados financeiros. O uso de ferramentas lineares como os modelos AR, MA, ARMA e GARCH têm muitas limitações, pois torna-se muito difícil adaptá-los às não linearidades dos fenómenos que ocorrem nos mercados. Pelas razões anteriormente referidas, os algoritmos como as redes neuronais dinâmicas (TDNN, NARX e ESN), mostram uma maior capacidade de adaptação a estas não linearidades, pois não fazem qualquer pressuposto sobre as distribuições de probabilidade que caracterizam estes mercados. O facto destas redes neuronais serem dinâmicas, faz com que estas exibam um desempenho superior em relação às redes neuronais estáticas, ou outros algoritmos que não possuem qualquer tipo de memória. Apesar das vantagens reveladas pelas redes neuronais, estas são um sistema do tipo black box, o que torna muito difícil extrair informação dos pesos da rede. Isto significa que estes algoritmos devem ser usados com precaução, pois podem tornar-se instáveis.
Resumo:
Nearest neighbour collaborative filtering (NNCF) algorithms are commonly used in multimedia recommender systems to suggest media items based on the ratings of users with similar preferences. However, the prediction accuracy of NNCF algorithms is affected by the reduced number of items – the subset of items co-rated by both users – typically used to determine the similarity between pairs of users. In this paper, we propose a different approach, which substantially enhances the accuracy of the neighbour selection process – a user-based CF (UbCF) with semantic neighbour discovery (SND). Our neighbour discovery methodology, which assesses pairs of users by taking into account all the items rated at least by one of the users instead of just the set of co-rated items, semantically enriches this enlarged set of items using linked data and, finally, applies the Collinearity and Proximity Similarity metric (CPS), which combines the cosine similarity with Chebyschev distance dissimilarity metric. We tested the proposed SND against the Pearson Correlation neighbour discovery algorithm off-line, using the HetRec data set, and the results show a clear improvement in terms of accuracy and execution time for the predicted recommendations.
Resumo:
This paper presents a Swarm based Cooperation Mechanism for scheduling optimization. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to support decision making in agile manufacturing environments. Agents coordinate their actions automatically without human supervision considering a common objective – global scheduling solution taking advantages from collective behavior of species through implicit and explicit cooperation. The performance of the cooperation mechanism will be evaluated consider implicit cooperation at first stage through ACS, PSO and ABC algorithms and explicit through cooperation mechanism application.
Resumo:
A novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS), Case-based Reasoning (CBR), and Bio-Inspired Optimization Techniques (BIT) will be described. AC has emerged as a paradigm aiming at incorporating applications with a management structure similar to the central nervous system. The main intentions are to improve resource utilization and service quality. In this paper we envisage the use of MAS paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with AC properties, in order to reduce the complexity of managing manufacturing systems and human interference. The proposed CBR based Intelligent Scheduling System was evaluated under different dynamic manufacturing scenarios.