128 resultados para Bilevel programming problem
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The higher education system in Europe is currently under stress and the debates over its reform and future are gaining momentum. Now that, for most countries, we are in a time for change, in the overall society and the whole education system, the legal and political dimensions have gained prominence, which has not been followed by a more integrative approach of the problem of order, its reform and the issue of regulation, beyond the typical static and classical cost-benefit analyses. The two classical approaches for studying (and for designing the policy measures of) the problem of the reform of the higher education system - the cost-benefit analysis and the legal scholarship description - have to be integrated. This is the argument of our paper that the very integration of economic and legal approaches, what Warren Samuels called the legal-economic nexus, is meaningful and necessary, especially if we want to address the problem of order (as formulated by Joseph Spengler) and the overall regulation of the system. On the one hand, and without neglecting the interest and insights gained from the cost-benefit analysis, or other approaches of value for money assessment, we will focus our study on the legal, social and political aspects of the regulation of the higher education system and its reform in Portugal. On the other hand, the economic and financial problems have to be taken into account, but in a more inclusive way with regard to the indirect and other socio-economic costs not contemplated in traditional or standard assessments of policies for the tertiary education sector. In the first section of the paper, we will discuss the theoretical and conceptual underpinning of our analysis, focusing on the evolutionary approach, the role of critical institutions, the legal-economic nexus and the problem of order. All these elements are related to the institutional tradition, from Veblen and Commons to Spengler and Samuels. The second section states the problem of regulation in the higher education system and the issue of policy formulation for tackling the problem. The current situation is clearly one of crisis with the expansion of the cohorts of young students coming to an end and the recurrent scandals in private institutions. In the last decade, after a protracted period of extension or expansion of the system, i. e., the continuous growth of students, universities and other institutions are competing harder to gain students and have seen their financial situation at risk. It seems that we are entering a period of radical uncertainty, higher competition and a new configuration that is slowly building up is the growth in intensity, which means upgrading the quality of the higher learning and getting more involvement in vocational training and life-long learning. With this change, and along with other deep ones in the Portuguese society and economy, the current regulation has shown signs of maladjustment. The third section consists of our conclusions on the current issue of regulation and policy challenge. First, we underline the importance of an evolutionary approach to a process of change that is essentially dynamic. A special attention will be given to the issues related to an evolutionary construe of policy analysis and formulation. Second, the integration of law and economics, through the notion of legal economic nexus, allows us to better define the issues of regulation and the concrete problems that the universities are facing. One aspect is the instability of the political measures regarding the public administration and on which the higher education system depends financially, legally and institutionally, to say the least. A corollary is the lack of clear strategy in the policy reforms. Third, our research criticizes several studies, such as the one made by the OECD in late 2006 for the Ministry of Science, Technology and Higher Education, for being too static and neglecting fundamental aspects of regulation such as the logic of actors, groups and organizations who are major players in the system. Finally, simply changing the legal rules will not necessary per se change the behaviors that the authorities want to change. By this, we mean that it is not only remiss of the policy maker to ignore some of the critical issues of regulation, namely the continuous non-respect by academic management and administrative bodies of universities of the legal rules that were once promulgated. Changing the rules does not change the problem, especially without the necessary debates form the different relevant quarters that make up the higher education system. The issues of social interaction remain as intact. Our treatment of the matter will be organized in the following way. In the first section, the theoretical principles are developed in order to be able to study more adequately the higher education transformation with a modest evolutionary theory and a legal and economic nexus of the interactions of the system and the policy challenges. After describing, in the second section, the recent evolution and current working of the higher education in Portugal, we will analyze the legal framework and the current regulatory practices and problems in light of the theoretical framework adopted. We will end with some conclusions on the current problems of regulation and the policy measures that are discusses in recent years.
Resumo:
In Distributed Computer-Controlled Systems (DCCS), a special emphasis must be given to the communication infrastructure, which must provide timely and reliable communication services. CAN networks are usually suitable to support small-scale DCCS. However, they are known to present some reliability problems, which can lead to an unreliable behaviour of the supported applications. In this paper, an atomic multicast protocol for CAN networks is proposed. This protocol explores the CAN synchronous properties, providing a timely and reliable service to the supported applications. The implementation of such protocol in Ada, on top of the Ada version of Real-Time Linux is presented, which is used to demonstrate the advantages and disadvantages of the platform to support reliable communications in DCCS.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
Wireless Sensor Networks (WSN) are being used for a number of applications involving infrastructure monitoring, building energy monitoring and industrial sensing. The difficulty of programming individual sensor nodes and the associated overhead have encouraged researchers to design macro-programming systems which can help program the network as a whole or as a combination of subnets. Most of the current macro-programming schemes do not support multiple users seamlessly deploying diverse applications on the same shared sensor network. As WSNs are becoming more common, it is important to provide such support, since it enables higher-level optimizations such as code reuse, energy savings, and traffic reduction. In this paper, we propose a macro-programming framework called Nano-CF, which, in addition to supporting in-network programming, allows multiple applications written by different programmers to be executed simultaneously on a sensor networking infrastructure. This framework enables the use of a common sensing infrastructure for a number of applications without the users having to worrying about the applications already deployed on the network. The framework also supports timing constraints and resource reservations using the Nano-RK operating system. Nano- CF is efficient at improving WSN performance by (a) combining multiple user programs, (b) aggregating packets for data delivery, and (c) satisfying timing and energy specifications using Rate- Harmonized Scheduling. Using representative applications, we demonstrate that Nano-CF achieves 90% reduction in Source Lines-of-Code (SLoC) and 50% energy savings from aggregated data delivery.
Resumo:
Over the last three decades, computer architects have been able to achieve an increase in performance for single processors by, e.g., increasing clock speed, introducing cache memories and using instruction level parallelism. However, because of power consumption and heat dissipation constraints, this trend is going to cease. In recent times, hardware engineers have instead moved to new chip architectures with multiple processor cores on a single chip. With multi-core processors, applications can complete more total work than with one core alone. To take advantage of multi-core processors, parallel programming models are proposed as promising solutions for more effectively using multi-core processors. This paper discusses some of the existent models and frameworks for parallel programming, leading to outline a draft parallel programming model for Ada.
Resumo:
This paper studies the Fermi-Pasta-Ulam problem having in mind the generalization provided by Fractional Calculus (FC). The study starts by addressing the classical formulation, based on the standard integer order differential calculus and evaluates the time and frequency responses. A first generalization to be investigated consists in the direct replacement of the springs by fractional elements of the dissipative type. It is observed that the responses settle rapidly and no relevant phenomena occur. A second approach consists of replacing the springs by a blend of energy extracting and energy inserting elements of symmetrical fractional order with amplitude modulated by quadratic terms. The numerical results reveal a response close to chaotic behaviour.
Resumo:
Several projects in the recent past have aimed at promoting Wireless Sensor Networks as an infrastructure technology, where several independent users can submit applications that execute concurrently across the network. Concurrent multiple applications cause significant energy-usage overhead on sensor nodes, that cannot be eliminated by traditional schemes optimized for single-application scenarios. In this paper, we outline two main optimization techniques for reducing power consumption across applications. First, we describe a compiler based approach that identifies redundant sensing requests across applications and eliminates those. Second, we cluster the radio transmissions together by concatenating packets from independent applications based on Rate-Harmonized Scheduling.
Resumo:
Wireless Sensor Networks (WSNs) are increasingly used in various application domains like home-automation, agriculture, industries and infrastructure monitoring. As applications tend to leverage larger geographical deployments of sensor networks, the availability of an intuitive and user friendly programming abstraction becomes a crucial factor in enabling faster and more efficient development, and reprogramming of applications. We propose a programming pattern named sMapReduce, inspired by the Google MapReduce framework, for mapping application behaviors on to a sensor network and enabling complex data aggregation. The proposed pattern requires a user to create a network-level application in two functions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to typical sensor networking operation which makes sensing and topological modalities accessible to the user.
Resumo:
We consider the problem of scheduling a multi-mode real-time system upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem.
Resumo:
Optimization problems arise in science, engineering, economy, etc. and we need to find the best solutions for each reality. The methods used to solve these problems depend on several factors, including the amount and type of accessible information, the available algorithms for solving them, and, obviously, the intrinsic characteristics of the problem. There are many kinds of optimization problems and, consequently, many kinds of methods to solve them. When the involved functions are nonlinear and their derivatives are not known or are very difficult to calculate, these methods are more rare. These kinds of functions are frequently called black box functions. To solve such problems without constraints (unconstrained optimization), we can use direct search methods. These methods do not require any derivatives or approximations of them. But when the problem has constraints (nonlinear programming problems) and, additionally, the constraint functions are black box functions, it is much more difficult to find the most appropriate method. Penalty methods can then be used. They transform the original problem into a sequence of other problems, derived from the initial, all without constraints. Then this sequence of problems (without constraints) can be solved using the methods available for unconstrained optimization. In this chapter, we present a classification of some of the existing penalty methods and describe some of their assumptions and limitations. These methods allow the solving of optimization problems with continuous, discrete, and mixing constraints, without requiring continuity, differentiability, or convexity. Thus, penalty methods can be used as the first step in the resolution of constrained problems, by means of methods that typically are used by unconstrained problems. We also discuss a new class of penalty methods for nonlinear optimization, which adjust the penalty parameter dynamically.
Resumo:
Search Optimization methods are needed to solve optimization problems where the objective function and/or constraints functions might be non differentiable, non convex or might not be possible to determine its analytical expressions either due to its complexity or its cost (monetary, computational, time,...). Many optimization problems in engineering and other fields have these characteristics, because functions values can result from experimental or simulation processes, can be modelled by functions with complex expressions or by noise functions and it is impossible or very difficult to calculate their derivatives. Direct Search Optimization methods only use function values and do not need any derivatives or approximations of them. In this work we present a Java API that including several methods and algorithms, that do not use derivatives, to solve constrained and unconstrained optimization problems. Traditional API access, by installing it on the developer and/or user computer, and remote API access to it, using Web Services, are also presented. Remote access to the API has the advantage of always allow the access to the latest version of the API. For users that simply want to have a tool to solve Nonlinear Optimization Problems and do not want to integrate these methods in applications, also two applications were developed. One is a standalone Java application and the other a Web-based application, both using the developed API.
Resumo:
Constrained nonlinear optimization problems are usually solved using penalty or barrier methods combined with unconstrained optimization methods. Another alternative used to solve constrained nonlinear optimization problems is the lters method. Filters method, introduced by Fletcher and Ley er in 2002, have been widely used in several areas of constrained nonlinear optimization. These methods treat optimization problem as bi-objective attempts to minimize the objective function and a continuous function that aggregates the constraint violation functions. Audet and Dennis have presented the rst lters method for derivative-free nonlinear programming, based on pattern search methods. Motivated by this work we have de- veloped a new direct search method, based on simplex methods, for general constrained optimization, that combines the features of the simplex method and lters method. This work presents a new variant of these methods which combines the lters method with other direct search methods and are proposed some alternatives to aggregate the constraint violation functions.
Resumo:
Constrained and unconstrained Nonlinear Optimization Problems often appear in many engineering areas. In some of these cases it is not possible to use derivative based optimization methods because the objective function is not known or it is too complex or the objective function is non-smooth. In these cases derivative based methods cannot be used and Direct Search Methods might be the most suitable optimization methods. An Application Programming Interface (API) including some of these methods was implemented using Java Technology. This API can be accessed either by applications running in the same computer where it is installed or, it can be remotely accessed through a LAN or the Internet, using webservices. From the engineering point of view, the information needed from the API is the solution for the provided problem. On the other hand, from the optimization methods researchers’ point of view, not only the solution for the problem is needed. Also additional information about the iterative process is useful, such as: the number of iterations; the value of the solution at each iteration; the stopping criteria, etc. In this paper are presented the features added to the API to allow users to access to the iterative process data.