99 resultados para Adaptive learning, Sticky information, Inflation dynamics, Nonlinearities
Resumo:
The TEM family of enzymes has had a crucial impact on the pharmaceutical industry due to their important role in antibiotic resistance. Even with the latest technologies in structural biology and genomics, no 3D structure of a TEM- 1/antibiotic complex is known previous to acylation. Therefore, the comprehension of their capability in acylate antibiotics is based on the protein macromolecular structure uncomplexed. In this work, molecular docking, molecular dynamic simulations, and relative free energy calculations were applied in order to get a comprehensive and thorough analysis of TEM-1/ampicillin and TEM-1/amoxicillin complexes. We described the complexes and analyzed the effect of ligand binding on the overall structure. We clearly demonstrate that the key residues involved in the stability of the ligand (hot-spots) vary with the nature of the ligand. Structural effects such as (i) the distances between interfacial residues (Ser70−Oγ and Lys73−Nζ, Lys73−Nζ and Ser130−Oγ, and Ser70−Oγ−Ser130−Oγ), (ii) side chain rotamer variation (Tyr105 and Glu240), and (iii) the presence of conserved waters can be also influenced by ligand binding. This study supports the hypothesis that TEM-1 suffers structural modifications upon ligand binding.
Resumo:
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
We address the problem of coordinating two non-holonomic mobile robots that move in formation while transporting a long payload. A competitive dynamics is introduced that gradually controls the activation and deactivation of individual behaviors. This process introduces (asymmetrical) hysteresis during behavioral switching. As a result behavioral oscillations, due to noisy information, are eliminated. Results in indoor environments show that if parameter values are chosen within reasonable ranges then, in spite of noise in the robots communi- cation and sensors, the overall robotic system works quite well even in cluttered environments. The robots overt behavior is stable and smooth.
Resumo:
This paper presents a fractional calculus perspective in the study of signals captured during the movement of a mechanical manipulator carrying a liquid container. In order to study the signals an experimental setup is implemented. The system acquires data from the sensors, in real time, and, in a second phase, processes them through an analysis package. The analysis package runs off-line and handles the recorded data. The results show that the Fourier spectrum of several signals presents a fractional behavior. The experimental study provides useful information that can assist in the design of a control system and the trajectory planning to be used in reducing or eliminating the effect of vibrations.
Resumo:
This paper addresses the use of multidimensional scaling in the evaluation of controller performance. Several nonlinear systems are analyzed based on the closed loop time response under the action of a reference step input signal. Three alternative performance indices, based on the time response, Fourier analysis, and mutual information, are tested. The numerical experiments demonstrate the feasibility of the proposed methodology and motivate its extension for other performance measures and new classes of nonlinearities.
Resumo:
This contribution presents novel concepts for analysis of pressure–volume curves, which offer information about the time domain dynamics of the respiratory system. The aim is to verify whether a mapping of the respiratory diseases can be obtained, allowing analysis of (dis)similarities between the dynamical pattern in the breathing in children. The groups investigated here are children, diagnosed as healthy, asthmatic, and cystic fibrosis. The pressure–volume curves have been measured by means of the noninvasive forced oscillation technique during breathing at rest. The geometrical fractal dimension is extracted from the pressure–volume curves and a power-law behavior is observed in the data. The power-law model coefficients are identified from the three sets and the results show that significant differences are present between the groups. This conclusion supports the idea that the respiratory system changes with disease in terms of airway geometry, tissue parameters, leading in turn to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.
Resumo:
Though the formal mathematical idea of introducing noninteger order derivatives can be traced from the 17th century in a letter by L’Hospital in which he asked Leibniz what the meaning of D n y if n = 1/2 would be in 1695 [1], it was better outlined only in the 19th century [2, 3, 4]. Due to the lack of clear physical interpretation their first applications in physics appeared only later, in the 20th century, in connection with visco-elastic phenomena [5, 6]. The topic later obtained quite general attention [7, 8, 9], and also found new applications in material science [10], analysis of earth-quake signals [11], control of robots [12], and in the description of diffusion [13], etc.
Resumo:
Remote experimentation laboratories are systems based on real equipment, allowing students to perform practical work through a computer connected to the internet. In engineering fields lab activities play a fundamental role. Distance learning has not demonstrated good results in engineering fields because traditional lab activities cannot be covered by this paradigm. These activities can be set for one or for a group of students who work from different locations. All these configurations lead to considering a flexible model that covers all possibilities (for an individual or a group). An inter-continental network of remote laboratories supported by both European and Latin American institutions of higher education has been formed. In this network context, a learning collaborative model for students working from different locations has been defined. The first considerations are presented.
Resumo:
Remote laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers, that gave support to students' use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real-world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. In addition, the last issue deals with the use of a multimeter in dc mode when reading ac values, a use that collides with the lab settings. All scenarios are presented and discussed, including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information-sharing between all actors, i.e., developers, teachers, and students.
Resumo:
According to recent studies, informal learning accounts for more than 75% of our continuous learning through life. However, the awareness of this learning, its benefits and its potential is still not very clear. In engineering contexts, informal learning could play an invaluable role helping students or employees to engage with peers and also with more experience colleagues, exchanging ideas and discussing problems. This work presents an initial set of results of the piloting phase of a project (TRAILER) where an innovative service based on Information & Communication Technologies was developed in order to aid the collection and visibility of informal learning. This set of results concerns engineering contexts (academic and business), from the learners' perspective. The major idea that emerged from these piloting trials was that it represented a good way of collecting, recording and sharing informal learning that otherwise could easily be forgotten. Several benefits were reported between the two communities such as being helpful in managing competences and human resources within an institution.
Resumo:
Sendo uma forma natural de interação homem-máquina, o reconhecimento de gestos implica uma forte componente de investigação em áreas como a visão por computador e a aprendizagem computacional. O reconhecimento gestual é uma área com aplicações muito diversas, fornecendo aos utilizadores uma forma mais natural e mais simples de comunicar com sistemas baseados em computador, sem a necessidade de utilização de dispositivos extras. Assim, o objectivo principal da investigação na área de reconhecimento de gestos aplicada à interacção homemmáquina é o da criação de sistemas, que possam identificar gestos específicos e usálos para transmitir informações ou para controlar dispositivos. Para isso as interfaces baseados em visão para o reconhecimento de gestos, necessitam de detectar a mão de forma rápida e robusta e de serem capazes de efetuar o reconhecimento de gestos em tempo real. Hoje em dia, os sistemas de reconhecimento de gestos baseados em visão são capazes de trabalhar com soluções específicas, construídos para resolver um determinado problema e configurados para trabalhar de uma forma particular. Este projeto de investigação estudou e implementou soluções, suficientemente genéricas, com o recurso a algoritmos de aprendizagem computacional, permitindo a sua aplicação num conjunto alargado de sistemas de interface homem-máquina, para reconhecimento de gestos em tempo real. A solução proposta, Gesture Learning Module Architecture (GeLMA), permite de forma simples definir um conjunto de comandos que pode ser baseado em gestos estáticos e dinâmicos e que pode ser facilmente integrado e configurado para ser utilizado numa série de aplicações. É um sistema de baixo custo e fácil de treinar e usar, e uma vez que é construído unicamente com bibliotecas de código. As experiências realizadas permitiram mostrar que o sistema atingiu uma precisão de 99,2% em termos de reconhecimento de gestos estáticos e uma precisão média de 93,7% em termos de reconhecimento de gestos dinâmicos. Para validar a solução proposta, foram implementados dois sistemas completos. O primeiro é um sistema em tempo real capaz de ajudar um árbitro a arbitrar um jogo de futebol robótico. A solução proposta combina um sistema de reconhecimento de gestos baseada em visão com a definição de uma linguagem formal, o CommLang Referee, à qual demos a designação de Referee Command Language Interface System (ReCLIS). O sistema identifica os comandos baseados num conjunto de gestos estáticos e dinâmicos executados pelo árbitro, sendo este posteriormente enviado para um interface de computador que transmite a respectiva informação para os robôs. O segundo é um sistema em tempo real capaz de interpretar um subconjunto da Linguagem Gestual Portuguesa. As experiências demonstraram que o sistema foi capaz de reconhecer as vogais em tempo real de forma fiável. Embora a solução implementada apenas tenha sido treinada para reconhecer as cinco vogais, o sistema é facilmente extensível para reconhecer o resto do alfabeto. As experiências também permitiram mostrar que a base dos sistemas de interação baseados em visão pode ser a mesma para todas as aplicações e, deste modo facilitar a sua implementação. A solução proposta tem ainda a vantagem de ser suficientemente genérica e uma base sólida para o desenvolvimento de sistemas baseados em reconhecimento gestual que podem ser facilmente integrados com qualquer aplicação de interface homem-máquina. A linguagem formal de definição da interface pode ser redefinida e o sistema pode ser facilmente configurado e treinado com um conjunto de gestos diferentes de forma a serem integrados na solução final.
Resumo:
Informal learning is becoming more and more important: Nowadays people learn more this way, through the Internet, than in schools or normal trainings. But they don’t get any certificateswhich attest this fact. So they can't show the employer or teacher etc. that they have learned something. TRAILER project aim is to solve this problem by developing a special tool for managing of all competences and skills acquired through informal learning experiences. Both from the perspective of the user and the perspective of an institution or a company. We’ll present the IT tool to show how people can make their informal learning outcomes visible. TRAILER helps users to gather all information about process and outcomes of their informal learning. Users can share this with friends, colleagues or their employees, teachers and so on. They can create an interactive e-portfolio which can be attached to their CV, cover letter or Knowledge Management system etc. After the presentation of the tool we will discuss possible areas and fields to use this tool. Also we would like to discuss all possible use of the tool by the participants and another needs in this area. Moreover we want to discuss other problems in informal learning process, ways to solve the problems and discuss other ideas of different IT tools which could help in informal learning process. During the discussion we’ll use an interactive respond system which can be used on mobile devices: it makes possible for participants to share their opinions individually before knowing another persons' opinion.
Resumo:
This paper presents the design of a user interface for repositories of learning objects. It integrates several tasks, such as submission, browse, search, and comment/review of learning objects, on a single screen layout. This design is being implemented on the web front-end of crimsonHex, a repository of specialized learning objects, developed as part of the EduJudge, a European project that aims to bring automatic evaluation of programming problems to eLearning systems.