102 resultados para electricity demand
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
Electricity markets are complex environments, involving numerous entities trying to obtain the best advantages and profits while limited by power-network characteristics and constraints.1 The restructuring and consequent deregulation of electricity markets introduced a new economic dimension to the power industry. Some observers have criticized the restructuring process, however, because it has failed to improve market efficiency and has complicated the assurance of reliability and fairness of operations. To study and understand this type of market, we developed the Multiagent Simulator of Competitive Electricity Markets (MASCEM) platform based on multiagent simulation. The MASCEM multiagent model includes players with strategies for bid definition, acting in forward, day-ahead, and balancing markets and considering both simple and complex bids. Our goal with MASCEM was to simulate as many market models and player types as possible. This approach makes MASCEM both a short- and mediumterm simulation as well as a tool to support long-term decisions, such as those taken by regulators. This article proposes a new methodology integrated in MASCEM for bid definition in electricity markets. This methodology uses reinforcement learning algorithms to let players perceive changes in the environment, thus helping them react to the dynamic environment and adapt their bids accordingly.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
This paper presents a new methodology for the creation and management of coalitions in Electricity Markets. This approach is tested using the multi-agent market simulator MASCEM, taking advantage of its ability to provide the means to model and simulate VPP (Virtual Power Producers). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market, and internally, with their members, in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. The new features include the development of particular individual facilitators to manage the communications amongst the members of each coalition independently from the rest of the simulation, and also the mechanisms for the classification of the agents that are candidates to join the coalition. In addition, a global study on the results of the Iberian Electricity Market is performed, to compare and analyze different approaches for defining consistent and adequate strategies to integrate into the agents of MASCEM. This, combined with the application of learning and prediction techniques provide the agents with the ability to learn and adapt themselves, by adjusting their actions to the continued evolving states of the world they are playing in.
Resumo:
Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.
Resumo:
Competitive electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is an electricity market simulator able to model market players and simulate their operation in the market. As market players are complex entities, having their characteristics and objectives, making their decisions and interacting with other players, a multi-agent architecture is used and proved to be adequate. MASCEM players have learning capabilities and different risk preferences. They are able to refine their strategies according to their past experience (both real and simulated) and considering other agents’ behavior. Agents’ behavior is also subject to its risk preferences.
Resumo:
This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.
Resumo:
This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.
Resumo:
Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.
Resumo:
Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.
Resumo:
An auction model is used to increase the individual profits for market players with products they do not use. A Financial Transmission Rights Auction has the goal of trade transmission rights between Bidders and helps them raise their own profits. The ISO plays a major rule on keep the system in technical limits without interfere on the auctions offers. In some auction models the ISO decide want bids are implemented on the network, always with the objective maximize the individual profits for all bidders in the auction. This paper proposes a methodology for a Financial Transmission Rights Auction and an informatics application. The application receives offers from the purchase and sale side and considers bilateral contracts as Base Case. This goal is maximize the individual profits within the system in their technical limits. The paper includes a case study for the 30 bus IEEE test case.