52 resultados para dynamic elastic modulus
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
EMC2 finds solutions for dynamic adaptability in open systems. It provides handling of mixed criticality multicore applications in r eal-time conditions, withscalability and utmost flexibility, full-scale deployment and management of integrated tool chains, through the entire lifecycle.
Resumo:
We consider a dynamic setting-price duopoly model in which a dominant (leader) firm moves first and a subordinate (follower) firm moves second. We suppose that each firm has two different technologies, and uses one of them according to a certain probability distribution. The use of either one or the other technology affects the unitary production cost. We analyse the effect of the production costs uncertainty on the profits of the firms, for different values of the intercept demand parameters.
Resumo:
The Container Loading Problem (CLP) literature has traditionally evaluated the dynamic stability of cargo by applying two metrics to box arrangements: the mean number of boxes supporting the items excluding those placed directly on the floor (M1) and the percentage of boxes with insufficient lateral support (M2). However, these metrics, that aim to be proxies for cargo stability during transportation, fail to translate real-world cargo conditions of dynamic stability. In this paper two new performance indicators are proposed to evaluate the dynamic stability of cargo arrangements: the number of fallen boxes (NFB) and the number of boxes within the Damage Boundary Curve fragility test (NB_DBC). Using 1500 solutions for well-known problem instances found in the literature, these new performance indicators are evaluated using a physics simulation tool (StableCargo), replacing the real-world transportation by a truck with a simulation of the dynamic behaviour of container loading arrangements. Two new dynamic stability metrics that can be integrated within any container loading algorithm are also proposed. The metrics are analytical models of the proposed stability performance indicators, computed by multiple linear regression. Pearson’s r correlation coefficient was used as an evaluation parameter for the performance of the models. The extensive computational results show that the proposed metrics are better proxies for dynamic stability in the CLP than the previous widely used metrics.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.