58 resultados para Use-wear analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes the change of the ultraviolet spectral bands starting from 0.1 to 5.0 nm slit width in the spectral range of 200–400 nm. The analysis of the spectral bands is carried out by using the multidimensional scaling (MDS) approach to reach the latent spectral background. This approach indicates that 0.1 nm slit width gives higher-order noise together with better spectral details. Thus, 5.0 nm slit width possesses the higher peak amplitude and lower-order noise together with poor spectral details. In the above-mentioned conditions, the main problem is to find the relationship between the spectral band properties and the slit width. For this aim, the MDS tool is to used recognize the hidden information of the ultraviolet spectra of sildenafil citrate by using a Shimadzu UV–VIS 2550, which is in the world the best double monochromator instrument. In this study, the proposed mathematical approach gives the rich findings for the efficient use of the spectrophotometer in the qualitative and quantitative studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies forest fires from the perspective of dynamical systems. Burnt area, precipitation and atmospheric temperatures are interpreted as state variables of a complex system and the correlations between them are investigated by means of different mathematical tools. First, we use mutual information to reveal potential relationships in the data. Second, we adopt the state space portrait to characterize the system’s behavior. Third, we compare the annual state space curves and we apply clustering and visualization tools to unveil long-range patterns. We use forest fire data for Portugal, covering the years 1980–2003. The territory is divided into two regions (North and South), characterized by different climates and vegetation. The adopted methodology represents a new viewpoint in the context of forest fires, shedding light on a complex phenomenon that needs to be better understood in order to mitigate its devastating consequences, at both economical and environmental levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software tools in education became popular since the widespread of personal computers. Engineering courses lead the way in this development and these tools became almost a standard. Engineering graduates are familiar with numerical analysis tools but also with simulators (e.g. electronic circuits), computer assisted design tools and others, depending on the degree. One of the main problems with these tools is when and how to start use them so that they can be beneficial to students and not mere substitutes for potentially difficult calculations or design. In this paper a software tool to be used by first year students in electronics/electricity courses is presented. The growing acknowledgement and acceptance of open source software lead to the choice of an open source software tool – Scilab, which is a numerical analysis tool – to develop a toolbox. The toolbox was developed to be used as standalone or integrated in an e-learning platform. The e-learning platform used was Moodle. The first approach was to assess the mathematical skills necessary to solve all the problems related to electronics and electricity courses. Analysing the existing circuit simulators software tools, it is clear that even though they are very helpful by showing the end result they are not so effective in the process of the students studying and self learning since they show results but not intermediate steps which are crucial in problems that involve derivatives or integrals. Also, they are not very effective in obtaining graphical results that could be used to elaborate reports and for an overall better comprehension of the results. The developed tool was based on the numerical analysis software Scilab and is a toolbox that gives their users the opportunity to obtain the end results of a circuit analysis but also the expressions obtained when derivative and integrals calculations, plot signals, obtain vector diagrams, etc. The toolbox runs entirely in the Moodle web platform and provides the same results as the standalone application. The students can use the toolbox through the web platform (in computers where they don't have installation privileges) or in their personal computers by installing both the Scilab software and the toolbox. This approach was designed for first year students from all engineering degrees that have electronics/electricity courses in their curricula.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in psychosocial treatments for schizophrenia have targeted social cognitive deficits. A critical literature review and effect-size (ES) analysis was conducted to investigate the efficacy of comprehensive programs of social cognitive training in schizophrenia. Results revealed 16 controlled studies consisting of seven models of comprehensive treatment with only three of these treatment models investigated in more than one study. The effects of social cognitive training were reported in 11/15 studies that included facial affect recognition skills (ES=.84) and 10/13 studies that included theory-of-mind (ES=.70) as outcomes. Less than half (4/9) of studies that measured attributional style as an outcome reported effects of treatment, but effect sizes across studies were significant (ESs=.30-.52). The effect sizes for symptoms were modest, but, with the exception of positive symptoms, significant (ESs=.32-.40). The majority of trials were randomized (13/16), selected active control conditions (11/16) and included at least 30 participants (12/16). Concerns for this area of research include the absence of blinded outcome raters in more than 50% of trials and low rates of utilization of procedures for maintaining treatment fidelity. These findings provide preliminary support for the broader use of comprehensive social cognitive training procedures as a psychosocial intervention for schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allied to an epidemiological study of population of the Senology Unit of Braga’s Hospital that have been diagnosed with malignant breast cancer, we describe the progression in time of repeated measurements of tumor marker Carcinoembryonic antigen (CEA). Our main purpose is to describe the progression of this tumor marker as a function of possible risk factors and, hence, to understand how these risk factors influences that progression. The response variable, values of CEA, was analyzed making use of longitudinal models, testing for different correlation structures. The same covariates used in a previous survival analysis were considered in the longitudinal model. The reference time used was time from diagnose until death from breast cancer. For diagnostic of the models fitted we have used empirical and theoretical variograms. To evaluate the fixed term of the longitudinal model we have tested for a changing point on the effect of time on the tumor marker progression. A longitudinal model was also fitted only to the subset of patients that died from breast cancer, using the reference time as time from date of death until blood test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An overwhelming problem in Math Curriculums in Higher Education Institutions (HEI), we are daily facing in the last decade, is the substantial differences in Math background of our students. When you try to transmit, engage and teach subjects/contents that your “audience” is unable to respond to and/or even understand what we are trying to convey, it is somehow frustrating. In this sense, the Math projects and other didactic strategies, developed through Learning Management System Moodle, which include an array of activities that combine higher order thinking skills with math subjects and technology, for students of HE, appear as remedial but important, proactive and innovative measures in order to face and try to overcome these considerable problems. In this paper we will present some of these strategies, developed in some organic units of the Polytechnic Institute of Porto (IPP). But, how “fruitful” are the endless number of hours teachers spent in developing and implementing these platforms? Do students react to them as we would expect? Do they embrace this opportunity to overcome their difficulties? How do they use/interact individually with LMS platforms? Can this environment that provides the teacher with many interesting tools to improve the teaching – learning process, encourages students to reinforce their abilities and knowledge? In what way do they use each available material – videos, interactive tasks, texts, among others? What is the best way to assess student’s performance in these online learning environments? Learning Analytics tools provides us a huge amount of data, but how can we extract “good” and helpful information from them? These and many other questions still remain unanswered but we look forward to get some help in, at least, “get some drafts” for them because we feel that this “learning analysis”, that tackles the path from the objectives to the actual results, is perhaps the only way we have to move forward in the “best” learning and teaching direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the need to find an alternative way to mechanical and welding joints, and at the same time to overcome some limitations linked to these traditional techniques, adhesive bonds can be used. Adhesive bonding is a permanent joining process that uses an adhesive to bond the components of a structure. Composite materials reinforced with fibres are becoming increasingly popular in many applications as a result of a number of competitive advantages. In the manufacture of composite structures, although the fabrication techniques reduce to the minimum by means of advanced manufacturing techniques, the use of connections is still required due to the typical size limitations and design, technological and logistical aspects. Moreover, it is known that in many high performance structures, unions between composite materials with other light metals such as aluminium are required, for purposes of structural optimization. This work deals with the experimental and numerical study of single lap joints (SLJ), bonded with a brittle (Nagase Chemtex Denatite XNRH6823) and a ductile adhesive (Nagase Chemtex Denatite XNR6852). These are applied to hybrid joints between aluminium (AL6082-T651) and carbon fibre reinforced plastic (CFRP; Texipreg HS 160 RM) adherends in joints with different overlap lengths (LO) under a tensile loading. The Finite Element (FE) Method is used to perform detailed stress and damage analyses allowing to explain the joints’ behaviour and the use of cohesive zone models (CZM) enables predicting the joint strength and creating a simple and rapid design methodology. The use of numerical methods to simulate the behaviour of the joints can lead to savings of time and resources by optimizing the geometry and material parameters of the joints. The joints’ strength and failure modes were highly dependent on the adhesive, and this behaviour was successfully modelled numerically. Using a brittle adhesive resulted in a negligible maximum load (Pm) improvement with LO. The joints bonded with the ductile adhesive showed a nearly linear improvement of Pm with LO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manipulator systems are rather complex and highly nonlinear which makes difficult their analysis and control. Classic system theory is veil known, however it is inadequate in the presence of strong nonlinear dynamics. Nonlinear controllers produce good results [1] and work has been done e. g. relating the manipulator nonlinear dynamics with frequency response [2–5]. Nevertheless, given the complexity of the problem, systematic methods which permit to draw conclusions about stability, imperfect modelling effects, compensation requirements, etc. are still lacking. In section 2 we start by analysing the variation of the poles and zeros of the descriptive transfer functions of a robot manipulator in order to motivate the development of more robust (and computationally efficient) control algorithms. Based on this analysis a new multirate controller which is an improvement of the well known “computed torque controller” [6] is announced in section 3. Some research in this area was done by Neuman [7,8] showing tbat better robustness is possible if the basic controller structure is modified. The present study stems from those ideas, and attempts to give a systematic treatment, which results in easy to use standard engineering tools. Finally, in section 4 conclusions are presented.