78 resultados para Repeated Load Triaxial (RLT) test
Resumo:
In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.
Resumo:
A sustentabilidade energética do planeta é uma preocupação corrente e, neste sentido, a eficiência energética afigura-se como sendo essencial para a redução do consumo em todos os setores de atividade. No que diz respeito ao setor residencial, o indevido comportamento dos utilizadores aliado ao desconhecimento do consumo dos diversos aparelhos, são factores impeditivos para a redução do consumo energético. Uma ferramenta importante, neste sentido, é a monitorização de consumos nomeadamente a monitorização não intrusiva, que apresenta vantagens económicas relativamente à monitorização intrusiva, embora levante alguns desafios na desagregação de cargas. Abordou-se então, neste documento, a temática da monitorização não intrusiva onde se desenvolveu uma ferramenta de desagregação de cargas residenciais, sobretudo de aparelhos que apresentavam elevados consumos. Para isso, monitorizaram-se os consumos agregados de energia elétrica, água e gás de seis habitações do município de Vila Nova de Gaia. Através da incorporação dos vetores de água e gás, a acrescentar ao da energia elétrica, provou-se que a performance do algoritmo de desagregação de aparelhos poderá aumentar, no caso de aparelhos que utilizem simultaneamente energia elétrica e água ou energia elétrica e gás. A eficiência energética é também parte constituinte deste trabalho e, para tal, implementaram-se medidas de eficiência energética para uma das habitações em estudo, de forma a concluir as que exibiam maior potencial de poupança, assim como rápidos períodos de retorno de investimento. De um modo geral, os objetivos propostos foram alcançados e espera-se que num futuro próximo, a monitorização de consumos não intrusiva se apresente como uma solução de referência no que respeita à sustentabilidade energética do setor residencial.
Resumo:
A brucelose é uma zoonose com elevada importância, causada por bactérias gram-negativas que são altamente patogénicas para uma grande variedade de animais e humanos. Existem zonas endémicas onde esta se prolifera com mais facilidade. Neste estudo os dados são relativos ao distrito de Viana do Castelo, os dados são recolhidas da base de dados da Unidade Local de Saúde do Alto-Minho, uma zona não considerada endémica. Os animais infetados são a principal fonte de contaminação e dispersão da brucelose, é necessário uma reduzida carga bacteriana para ocorrer a infeção. Trata-se de uma doença que está longe de ser erradicada, impondo-se tomar medidas preventivas em relação à contaminação. Os testes usados na sua deteção podem ser alterados e melhorados de acordo com o estádio da doença. Na ULSAM são usados o teste de Wright e eventualmente a pesquisa microbiológica da bactéria Brucella. É pertinente saber o número de testes positivos que ocorrem por ano, se existe alguma sazonalidade relacionada com a doença, assim como, relacionar os parâmetros bioquímicos com um teste de Wright positivo. Os dados foram recolhidos entre o ano 2009-2013 com um número total de testes de 1035, dos quais o número total de positivos para o teste são 102, mas apenas trinta são positivos com significância. Os dados foram recolhidos através do programa Clinidata utilizado como base de armazenamento de dados da ULSAM e foram tratados estatisticamente com o programa SPSS juntamente com o Excel. Este estudo permitiu concluir que o número de casos em 2009 e 2010 era superior aos restantes anos, o que descreve uma tendência para diminuição do número de casos de brucelose atualmente no distrito de Viana do Castelo. Em relação a sazonalidade, os meses que apresentam uma percentagem superior a 50% em relação seroprevalência são os meses de Junho, Novembro e Dezembro. Os resultados revelam como declarado pela Organização Mundial de Saúde que o Distrito de Viana do Castelo não é uma zona endémica. Através da análise estatística foi possível concluir que um dos parâmetros bioquímicos, neste caso o número de leucócitos, poderá estar diretamente relacionado com um teste de Wright positivo, uma vez que, 37% da amostra de testes positivos revelam leucopenia.
Resumo:
Esta dissertação teve como objetivo fundamental a otimização energética do sistema de refrigeração da máquina de impregnar tela ZELL e, como objetivo adicional, a avaliação da qualidade da água do circuito, justificada pela acentuada degradação dos rolos devido à corrosão provocada pela recirculação da água de arrefecimento. Inicialmente fez-se o levantamento de informações do processo produtivo para caracterizar o funcionamento do sistema de refrigeração, tendo-se selecionado duas telas de poliéster designadas neste estudo por P1 e P2 e, também, uma tela de nylon designada por N. Foram efetuados ensaios, um para cada tela, para a atual temperatura de setpoint da água à saída da torre de arrefecimento (30ºC). Realizou-se outro ensaio para a tela N mas com uma temperatura de setpoint de 37ºC, ao qual se chamou N37. Deste modo, determinou-se as potências térmicas removidas pela água de refrigeração e as potências térmicas perdidas por radiação e por convecção, tendo-se verificado que na generalidade dos rolos as referências P1 e P2 apresentam valores mais elevados. Em termos percentuais, a potência térmica removida pela água de refrigeração nos grupos tratores 1 e 3 e no conjunto de rolos de R1 a R29 corresponde a 48%, 10% e 70%, respetivamente. Com a avaliação às necessidades de arrefecimento da máquina ZELL, confirmou-se que os caudais atuais de refrigeração dos rolos garantem condições, mais que suficientes, de funcionamento dos rolamentos. Assim sendo, fez-se uma análise no sentido da diminuição do caudal total que passou de 10,25 L/s para 7,65 L/s. Considerando esta redução, determinou-se o caudal de ar húmido a ser introduzido na torre de arrefecimento. O valor determinado foi de 4,6 m3ar húmido/s, o que corresponde a uma redução de cerca de 32% em relação ao caudal atual que é de 6,8 m3ar húmido/s. Com os resultados das análises efetuadas à água do circuito de refrigeração, concluiu-se que a água de reposição e a água de recirculação possuem má qualidade para uso na generalidade dos sistemas de refrigeração, principalmente devido aos elevados valores de concentração de ferro e condutividade elétrica, responsáveis pela intensificação da corrosão no interior dos rolos.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
The deregulation of electricity markets has diversified the range of financial transaction modes between independent system operator (ISO), generation companies (GENCO) and load-serving entities (LSE) as the main interacting players of a day-ahead market (DAM). LSEs sell electricity to end-users and retail customers. The LSE that owns distributed generation (DG) or energy storage units can supply part of its serving loads when the nodal price of electricity rises. This opportunity stimulates them to have storage or generation facilities at the buses with higher locational marginal prices (LMP). The short-term advantage of this model is reducing the risk of financial losses for LSEs in DAMs and its long-term benefit for the LSEs and the whole system is market power mitigation by virtually increasing the price elasticity of demand. This model also enables the LSEs to manage the financial risks with a stochastic programming framework.
Resumo:
The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.
Resumo:
Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.
Resumo:
The rising usage of distributed energy resources has been creating several problems in power systems operation. Virtual Power Players arise as a solution for the management of such resources. Additionally, approaching the main network as a series of subsystems gives birth to the concepts of smart grid and micro grid. Simulation, particularly based on multi-agent technology is suitable to model all these new and evolving concepts. MASGriP (Multi-Agent Smart Grid simulation Platform) is a system that was developed to allow deep studies of the mentioned concepts. This paper focuses on a laboratorial test bed which represents a house managed by a MASGriP player. This player is able to control a real installation, responding to requests sent by the system operators and reacting to observed events depending on the context.
Resumo:
Demand response is an energy resource that has gained increasing importance in the context of competitive electricity markets and of smart grids. New business models and methods designed to integrate demand response in electricity markets and of smart grids have been published, reporting the need of additional work in this field. In order to adequately remunerate the participation of the consumers in demand response programs, improved consumers’ performance evaluation methods are needed. The methodology proposed in the present paper determines the characterization of the baseline approach that better fits the consumer historic consumption, in order to determine the expected consumption in absent of participation in a demand response event and then determine the actual consumption reduction. The defined baseline can then be used to better determine the remuneration of the consumer. The paper includes a case study with real data to illustrate the application of the proposed methodology.
Resumo:
The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
The increase of electricity demand in Brazil, the lack of the next major hydroelectric reservoirs implementation, and the growth of environmental concerns lead utilities to seek an improved system planning to meet these energy needs. The great diversity of economic, social, climatic, and cultural conditions in the country have been causing a more difficult planning of the power system. The work presented in this paper concerns the development of an algorithm that aims studying the influence of the issues mentioned in load curves. Focus is given to residential consumers. The consumption device with highest influence in the load curve is also identified. The methodology developed gains increasing importance in the system planning and operation, namely in the smart grids context.
Resumo:
In this work, the impact of distributed generation in the transmission expansion planning will be simulated through the performance of an optimization process for three different scenarios: the first without distributed generation, the second with distributed generation equivalent to 1% of the load, and the third with 5% of distributed generation. For modeling the expanding problem the load flow linearized method using genetic algorithms for optimization has been chosen. The test circuit used is a simplification of the south eastern Brazilian electricity system with 46 buses.