76 resultados para Portlet-based application


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally, the evolution process of applications has impact on their underlining data models, thus becoming a time-consuming problem for programmers and database administrators. In this paper we address this problem within an aspect-oriented approach, which is based on a meta-model for orthogonal persistent programming systems. Applying reflection techniques, our meta-model aims to be simpler than its competitors. Furthermore, it enables database multi-version schemas. We also discuss two case studies in order to demonstrate the advantages of our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power systems have been experiencing huge changes mainly due to the substantial increase of distributed generation (DG) and the operation in competitive environments. Virtual Power Players (VPP) can aggregate several players, namely a diversity of energy resources, including distributed generation (DG) based on several technologies, electric storage systems (ESS) and demand response (DR). Energy resources management gains an increasing relevance in this competitive context. This makes the DR use more interesting and flexible, giving place to a wide range of new opportunities. This paper proposes a methodology to support VPPs in the DR programs’ management, considering all the existing energy resources (generation and storage units) and the distribution network. The proposed method is based on locational marginal prices (LMP) values. The evaluation of the impact of using DR specific programs in the LMP values supports the manager decision concerning the DR use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 33-bus network with intensive use of DG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a literature review, this article frames different stages of the foster care process, identifying a set of standardized measures in the American and Portuguese contexts which, if implemented, could contribute towards higher levels of foster success. The article continues with the presentation of a comparative study, based on the application of the Casey Foster Applicant Inventory-Applicant Version (CFAI-A) questionnaire, in the aforementioned contexts. Taking a comparative analyses of CFAI-A's psychometric characteristics in four different samples as a starting point, one discovered that despite the fact that the questionnaire was adapted to Portuguese reality, it kept the quality values presented on the American samples. It specifically shows significant values regarding reliability and validity. This questionnaire, which aims to assess the potential of foster families, also supports the technical staff's decision making process regarding the monitoring and support of foster families, while it also promotes a better decision in the placement process towards the child's integration and development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many-core platforms are an emerging technology in the real-time embedded domain. These devices offer various options for power savings, cost reductions and contribute to the overall system flexibility, however, issues such as unpredictability, scalability and analysis pessimism are serious challenges to their integration into the aforementioned area. The focus of this work is on many-core platforms using a limited migrative model (LMM). LMM is an approach based on the fundamental concepts of the multi-kernel paradigm, which is a promising step towards scalable and predictable many-cores. In this work, we formulate the problem of real-time application mapping on a many-core platform using LMM, and propose a three-stage method to solve it. An extended version of the existing analysis is used to assure that derived mappings (i) guarantee the fulfilment of timing constraints posed on worst-case communication delays of individual applications, and (ii) provide an environment to perform load balancing for e.g. energy/thermal management, fault tolerance and/or performance reasons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work uses surface imprinting to design a novel smart plastic antibodymaterial (SPAM) for Haemoglobin (Hb). Charged binding sites are described here for the first time to tailor plastic antibody nanostructures for a large size protein such as Hb. Its application to design small, portable and low cost potentiometric devices is presented. The SPAM material was obtained by linking Hb to silica nanoparticles and allowing its ionic interaction with charged vinyl monomers. A neutral polymeric matrix was created around these and the imprinted protein removed. Additional materials were designed in parallel acting as a control: a neutral imprinted material (NSPAM), obtained by removing the charged monomers from the procedure, and the Non-Imprinted (NI) versions of SPAM and NSPAM by removing the template. SEM analysis confirmed the surface modification of the silica nanoparticles. All materials were mixed with PVC/plasticizer and applied as selective membranes in potentiometric transduction. Electromotive force (emf) variations were detected only for selective membranes having a lipophilic anionic additive in the membrane. The presence of Hb inside these membranes was evident and confirmed by FTIR, optical microscopy and Raman spectroscopy. The best performance was found for SPAM-based selective membranes with an anionic lipophilic additive, at pH 5. The limits of detection were 43.8 mg mL 1 and linear responses were obtained down to 83.8 mg mL 1, with an average cationic slope of +40 mV per decade. Good selectivity was also observed against other coexisting biomolecules. The analytical application was conducted successfully, showing accurate and precise results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astringency is an organoleptic property resulting mostly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers but being typically measured by sensorial panels it turns out subjective and expensive. The main goal of the present work is to develop a sensory system to estimate astringency relying on protein/polyphenol interactions. For this purpose, a model protein was immobilized on a sensory gold surface and its subsequent interaction with polyphenols was measured by Surface Plasma Resonance (SPR). α-amylase and pentagalloyl glucose (PGG) were selected as model protein and polyphenol, respectively. To ensure specific binding between these, various surface chemistries were tested. Carboxylic terminated thiol decreased the binding ability of PGG and allowed covalent attachment of α-amylase to the surface. The pH 5 was the optimal condition for α-amylase immobilization on the surface. Further studies focus on Localized SPR sensor and application to wine samples, providing objectivity when compared to a trained panel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN) < 500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10−5 to 1 × 10−10 and 1 × 10−3 to 1 × 10−8 mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10−8 mol/L) SMX for a sub-Nernstian slope of −40.3 mV/decade from 5.0 × 10−8 to 2.4 × 10−5 mol/L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

20th International Conference on Reliable Software Technologies - Ada-Europe 2015 (Ada-Europe 2015), 22 to 26, Jun, 2015, Madrid, Spain.