50 resultados para Peak demand spreading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On a symmetric differentiated Stackelberg duopoly model in which there is asymmetric demand information owned by leading and follower firms, we show that the leading firm does not necessarily have advantage over the following one. The reason for this is that the second mover can adjust its output level after observing the realized demand, while the first mover chooses its output level only with the knowledge of demand distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a quantity-setting duopoly model, and we study the decision to move first or second, by assuming that. the firms produce homogeneous goods and that. there is some demand uncertainty. The competitive phase consists of two periods, and in either period, the firms can make a production decision that is irreversible. As far as the firms are allowed to choose (non-cooperatively) the period they make the decision, we study the circumstances that favour sequential rather than simultaneous decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a symmetric Stackelberg model in which there is asymmetric demand information owned by first and second movers. We analyse the advantages of leadership and flexibility, and prove that when the leading firm faces demand uncertainty, but the follower does not, the first mover does not necessarily have advantage over the second mover. Moreover, we show that the advantage of one firm over the other depends upon the demand fluctuation and also upon the degree of substitutability of the products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a differentiated Stackelberg model with demand uncertainty only for the first mover. We study the advantages of flexibility over leadership as the degree of the differentiation of the goods changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Further improvements in demand response programs implementation are needed in order to take full advantage of this resource, namely for the participation in energy and reserve market products, requiring adequate aggregation and remuneration of small size resources. The present paper focuses on SPIDER, a demand response simulation that has been improved in order to simulate demand response, including realistic power system simulation. For illustration of the simulator’s capabilities, the present paper is proposes a methodology focusing on the aggregation of consumers and generators, providing adequate tolls for the demand response program’s adoption by evolved players. The methodology proposed in the present paper focuses on a Virtual Power Player that manages and aggregates the available demand response and distributed generation resources in order to satisfy the required electrical energy demand and reserve. The aggregation of resources is addressed by the use of clustering algorithms, and operation costs for the VPP are minimized. The presented case study is based on a set of 32 consumers and 66 distributed generation units, running on 180 distinct operation scenarios.