58 resultados para Optimization. Markov Chain. Genetic Algorithm. Fuzzy Controller


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a Genetic Algorithm (GA) for the design of combinational logic circuits. The fitness function evaluation is calculated using Fractional Calculus. This approach extends the classical fitness function by including a fractional-order dynamical evaluation. The experiments reveal superior results when comparing with the classical method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the calculation of fractional integrals by means of the time delay operator. The study starts by reviewing the memory properties of fractional operators and their relationship with time delay. Based on the time response of the Mittag-Leffler function an approximation of fractional integrals consisting of time delayed samples is proposed. The tuning of the approximation is optimized by means of a genetic algorithm. The results demonstrate the feasibility of the new perspective and the limits of their application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A composição musical é um tema de muito interesse para a computação evolucionária dentro da área da inteligência artificial. É uma área que tem sofrido vários desenvolvimentos ao longo dos últimos anos pois o interesse em que hajam computadores que façam obras musicais é deveras aliciante. Este trabalho tem por objectivo realizar mais um passo nesse sentido. Assim, foi desenvolvida uma aplicação informática que realiza composições musicais de dois géneros distintos: Músicas Infantis e Músicas Blues. A aplicação foi implementada com recurso aos Algoritmos Genéticos, que são os algoritmos evolucionários mais populares da área da computação evolucionária. O trabalho foi estruturado em duas fases de desenvolvimento. Na primeira fase, realizou-se um levantamento estatístico sobre as características específicas de cada um dos géneros musicais. Analisaram-se quinze músicas de cada género musical, com o intuito de se chegar a uma proporção do uso que cada nota tem em cada um dos casos. Na segunda fase, desenvolveu-se o software que compõe as músicas com implementação de um algoritmo genético. Além disso, foi também desenvolvida uma interface gráfica que permite ao utilizador a escolha do género musical que pretende compor. O algoritmo genético começa por gerar uma população inicial de potenciais soluções de acordo com a escolha do utilizador, realizando, de seguida, o ciclo que caracteriza o algoritmo genético. A população inicial é constituída por soluções que seguem as regras que foram implementadas de acordo com os dados recolhidos ao longo da primeira fase. Foi também implementada uma interface de avaliação, através da qual, o utilizador pode ouvir cada uma das músicas para posterior avaliação em termos de fitness. O estado de evolução do algoritmo é apresentado, numa segunda interface, a qual facilita a clareza e justiça na avaliação ao longo de todo o processo. Esta última apresenta informação sobre a média das fitness da geração anterior e actual, sendo assim possível ter uma noção da evolução do algoritmo, no sentido de se obterem resultados satisfatórios no que diz respeito às composições musicais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A satisfação das necessidades energéticas mundiais, cada vez mais exigentes, bem como a necessidade urgente de procurar caminhos que permitam usufruir de energia, da forma menos poluente possível, levam à necessidade de serem explorados caminhos que permitam cumprir estes pressupostos. A escolha da utilização das energias renováveis na produção de energia, torna-se cada vez mais interessante, quer do ponto de vista ambiental quer económico. O fundamento da lógica difusa está associado à recolha de informações vagas, que são no fundo uma linguagem falada por seres humanos, possibilitando a passagem deste tipo de linguagem para formato numérico, permitindo assim uma manipulação computacional. Elementos climáticos como o sol e o vento, podem ser descritos em forma de variáveis linguísticas, como é o caso de vento forte, temperatura baixa, irradiação fraca, etc. Isto faz com que a aplicação de um controlo a partir destes fenómenos, justifique ser realizado com recurso a sistemas de inferência difusa. Para a realização do trabalho proposto, foram consumados estudos relativos às energias renováveis, com particular enfoque na solar e na eólica. Também foi realizado um estudo dos conceitos pertencentes à lógica difusa e a sistemas de inferência difusa com o objetivo de perceber os diversos parâmetros constituintes desta matéria. Foi realizado o estudo e desenvolvimento de um sistema de aquisição de dados, bem como do controlador difuso que é o busílis do trabalho descrito neste relatório. Para tal, o trabalho foi efetuado com o recurso ao software MATLAB, a partir do qual foram desenvolvidas aplicações que possibilitaram a obtenção de dados climáticos, com vista à sua utilização na toolbox Fuzzy Logic a qual foi utilizada para o desenvolvimento de todo o algoritmo de controlo. Com a possibilidade de aquisição de dados concluída e das variáveis que iriam ser necessárias definidas, foi implementado o controlador difuso que foi sendo sintonizado ao longo do trabalho por forma a garantir os melhores resultados possíveis. Com o recurso à ferramenta Guide, também do MATLAB, foi criada a interface do sistema com o utilizador, sendo possível a averiguação da energia a ser produzida, bem como das contribuições de cada uma das fontes de energia renováveis para a obtenção dessa mesma energia. Por último, foi feita uma análise de resultados através da comparação entre os valores reais esperados e os valores obtidos pelo controlador difuso, bem como assinaladas conclusões e possibilidades de desenvolvimentos futuros deste trabalho.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A levitação magnética tem sido um tema bastante investigado sobretudo devido à sua utilização em sistemas ferroviários de transportes. É o método ideal quando existe a necessidade em aplicações de restringir do contacto físico, ou a conveniência, em termos energéticos, de eliminar o atrito. O princípio de funcionamento é simples, um eletroíman cria uma força sobre um objeto ferromagnético que contraria a gravidade. Contudo um sistema de levitação por atração é instável e não linear, o que significa a necessidade de implementar um controlador para satisfazer as características de estabilidade desejadas. Ao longo deste projeto serão descritos os procedimentos teóricos e práticos que foram tomados na criação de um sistema de levitação eletromagnética. Desde a conceção física do sistema, como escolha do sensor, condicionamento de sinal ou construção do eletroíman, até aos procedimentos matemáticos que permitiram a modelação do sistema e criação de controladores. Os controladores clássicos, como o PID ou em avanço de fase, foram projetados através da técnica do Lugar Geométrico de Raízes. No projeto do controlador difuso, pelo contrário não se fez uso da modelação do sistema ou de qualquer relação matemática entre as variáveis. A utilização desta técnica de controlo destacou-se pela usa simplicidade e rapidez de implementação, fornecendo um bom desempenho ao sistema. Na parte final do relatório os resultados obtidos pelos diferentes métodos de controlo são analisados e apresentadas as respetivas conclusões. Estes resultados revelam que para este sistema, relativamente aos outros métodos, o controlador difuso apresenta o melhor desempenho tanto ao nível da resposta transitória, como em regime permanente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No âmbito da investigação operacional o problema de empacotamento de contentores é conhecido por procurar definir uma configuração de carga, de forma a otimizar a utilização de um espaço disponível para efetuar o empacotamento. Este problema pode ser apresentado em diversas formas, formas estas que variam em função das características de cada empacotamento. Estas características podem ser: o tipo de carga que se pretende carregar (homogénea ou heterogénea), a possibilidade de a carga poder sofrer rotações em todas as suas dimensões ou apenas em algumas, o lucro que está associado a cada caixa carregada ou restrições inerentes ao contentor como por exemplo dimensões. O interesse pelo estudo de problemas de empacotamento de contentores tem vindo a receber cada vez mais ênfase por várias razões, uma delas é o interesse financeiro dado que o transporte é uma prática que representa custos, sendo importante diminuir estes custos aproveitando o volume do contentor da melhor forma. Outra preocupação que motiva o estudo deste problema prende-se com fatores ambientes, onde se procura racionalizar os recursos naturais estando esta também ligada a questões financeiras. Na literatura podem ser encontradas varias propostas para solucionar este problema, cada uma destas dirigidas a uma variante do problema, estas propostas podem ser determinísticas ou não determinísticas onde utilizam heurísticas ou metaheurísticas. O estudo realizado nesta dissertação descreve algumas destas propostas, nomeadamente as metaheurísticas que são utilizadas na resolução deste problema. O trabalho aqui apresentado traz também uma nova metaheurísticas, mais precisamente um algoritmo genético que terá como objetivo, apresentar uma configuração de carga para um problema de empacotamento de um contentor. O algoritmo genético tem como objetivo a resolução do seguinte problema: empacotar várias caixas retangulares com diversos tamanhos num contentor. Este problema é conhecido como Bin-Packing. A novidade que este algoritmo genético vai introduzir nas diversas soluções apresentadas até à data, é uma nova forma de criar padrões iniciais, ou seja, é utilizada a heurística HSSI (Heurística de Suavização de Superfícies Irregulares) que tem como objetivo criar uma população inicial de forma a otimizar o algoritmo genético. A heurística HSSI tenta resolver problemas de empacotamento simulando, o comportamento da maioria das pessoas ao fazer este processo na vida real, contudo, tem um campo de busca reduzido entre as soluções possíveis e será então utilizado um algoritmo genético para ampliar este campo de busca e explorar novas soluções. No final pretende-se obter um software onde será possível configurar um dado problema de empacotamento de um contentor e obter, a solução do mesmo através do algoritmo genético. Assim sendo, o estudo realizado tem como principal objetivo contribuir com pesquisas e conclusões, sobre este problema e trazer uma nova proposta de solução para o problema de empacotamento de contentores.