47 resultados para Modelos lineares (Estatística)
Resumo:
Neste documento, são investigados vários métodos usados na inteligência artificial, com o objetivo de obter previsões precisas da evolução dos mercados financeiros. O uso de ferramentas lineares como os modelos AR, MA, ARMA e GARCH têm muitas limitações, pois torna-se muito difícil adaptá-los às não linearidades dos fenómenos que ocorrem nos mercados. Pelas razões anteriormente referidas, os algoritmos como as redes neuronais dinâmicas (TDNN, NARX e ESN), mostram uma maior capacidade de adaptação a estas não linearidades, pois não fazem qualquer pressuposto sobre as distribuições de probabilidade que caracterizam estes mercados. O facto destas redes neuronais serem dinâmicas, faz com que estas exibam um desempenho superior em relação às redes neuronais estáticas, ou outros algoritmos que não possuem qualquer tipo de memória. Apesar das vantagens reveladas pelas redes neuronais, estas são um sistema do tipo black box, o que torna muito difícil extrair informação dos pesos da rede. Isto significa que estes algoritmos devem ser usados com precaução, pois podem tornar-se instáveis.
Resumo:
O uso de ligações adesivas aumentou significativamente nos últimos anos e é hoje em dia uma técnica de ligação dominante na indústria aeronáutica e automóvel. As ligações adesivas visam substituir os métodos tradicionais de fixação mecânicos na união de estruturas. A melhoria ao longo dos anos de vários modelos de previsão de dano, nomeadamente através do Método de Elementos Finitos (MEF), tem ajudado ao desenvolvimento desta técnica de ligação. Os Modelos de Dano coesivo (MDC), usados em conjunto com MEF, são uma ferramenta viável para a previsão de resistência de juntas adesivas. Os MDC combinam critérios da resistência dos materiais para a iniciação do dano e conceitos da mecânica da fratura para a propagação da fenda. Existem diversas formas de leis coesivas possíveis de aplicar em simulações por MDC, em função do comportamento expectável dos materiais que estão a ser simulados. Neste trabalho, estudou-se numericamente o efeito de diversas formas de leis coesivas na previsão no comportamento de juntas adesivas, nomeadamente nas curvas forçadeslocamento (P-) de ensaios Double-Cantilever Beam para caracterização à tração e ensaios End-Notched Flexure para caraterização ao corte. Também se estudou a influência dos parâmetros coesivos à tração e corte nas curvas P- dos referidos ensaios. Para o Araldite®AV138 à tração e ao corte, a lei triangular é a que melhor prevê o comportamento do adesivo. Para a previsão da resistência de ambos os adesivos Araldite® 2015 e SikaForce® 7752, a lei trapezoidal é a que melhor se adequa, confirmando assim que esta lei é a que melhor caracteriza o comportamento de dano de adesivos tipicamente dúcteis. O estudo dos parâmetros revelou influência distinta na previsão do comportamento das juntas, embora com bastantes semelhanças entre os diferentes tipos de adesivos.