67 resultados para Generation capacity adequacy
Resumo:
Demand response is assumed as an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets and of the increasing use of renewable-based energy sources. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed in this paper aims the minimization of the operation costs in a distribution network operated by a virtual power player that manages the available energy resources focusing on hour ahead re-scheduling. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs. Real time pricing is also applied. The proposed model is especially useful when actual and day ahead wind forecast differ significantly. Its application is illustrated in this paper implementing the characteristics of a real resources conditions scenario in a 33 bus distribution network with 32 consumers and 66 distributed generators.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.
Resumo:
The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The implementation of competitive electricity markets has changed the consumers’ and distributed generation position power systems operation. The use of distributed generation and the participation in demand response programs, namely in smart grids, bring several advantages for consumers, aggregators, and system operators. The present paper proposes a remuneration structure for aggregated distributed generation and demand response resources. A virtual power player aggregates all the resources. The resources are aggregated in a certain number of clusters, each one corresponding to a distinct tariff group, according to the economic impact of the resulting remuneration tariff. The determined tariffs are intended to be used for several months. The aggregator can define the periodicity of the tariffs definition. The case study in this paper includes 218 consumers, and 66 distributed generation units.
Resumo:
The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.
Resumo:
In this work, the impact of distributed generation in the transmission expansion planning will be simulated through the performance of an optimization process for three different scenarios: the first without distributed generation, the second with distributed generation equivalent to 1% of the load, and the third with 5% of distributed generation. For modeling the expanding problem the load flow linearized method using genetic algorithms for optimization has been chosen. The test circuit used is a simplification of the south eastern Brazilian electricity system with 46 buses.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.
Resumo:
Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.
Resumo:
Portugal continental apresenta uma vasta área florestal, que representa cerca de 35,4% da ocupação total do solo, com predominância de espécies como o eucalipto (Eucalyptus globulus) e o pinheiro-bravo (Pinus pinaster). Estas espécies apresentam uma elevada importância a nível económico, designadamente devido à sua ampla utilização, nomeadamente na indústria de celulose e papel, gerando elevadas quantidades de resíduos. Este resíduo de biomassa florestal é utilizado, na sua totalidade, para a geração de energia, na forma de eletricidade ou aquecimento. No entanto, existem outras opções viáveis, a nível económico, tais como a valorização destes subprodutos como fonte de compostos polifenólicos tornando-os, assim, um produto de valor acrescentado. A extração de compostos fenólicos de subprodutos florestais, como folhas de eucalipto e agulhas de pinheiros tem vindo a aumentar devido, principalmente, à substituição de antioxidantes sintéticos, contribuindo para a valorização de subprodutos florestais. Contudo, apesar de todas as potenciais aplicações e vantagens, apenas algumas centenas de espécies aromáticas identificadas são utilizadas à escala comercial. Neste trabalho foi avaliada a capacidade antioxidante de subprodutos da floresta, otimizando as condições de extração através do estudo dos fatores: tempo de extração, temperatura e composição de solvente através do método de superfície de resposta. O planeamento experimental utilizado teve como base um planeamento de compósito central e a avaliação do perfil de antioxidantes das matrizes analisadas foi realizada através de métodos de quantificação total, como o teor fenólico total, a atividade anti-radicalar – método do DPPH (radical 2,2-difenil-1-picrilhidrazilo) e o método de FRAP. Estes métodos analíticos convencionais foram modificados e, devidamente validados, para a análise em leitor de microplacas. Verificou-se que os extratos de pinheiro e de eucalipto, tanto as amostras verdes com as amostras, apresentam uma promissora capacidade antioxidante. O planeamento fatorial aplicado permitiu otimizar as condições de extração em relação às matrizes verdes. Contudo, o mesmo não se verificou em relação às matrizes secas. A composição (% de água) é sem dúvida o fator com mais efeito em todas as amostras (coeficientes de primeira e segunda ordem no modelo). Também a temperatura foi identificada como um fator com efeito significativo sobre os sistemas em análise.
Resumo:
This work measures and tries to compare the Antioxidant Capacity (AC) of 50 commercial beverages of different kinds: 6 wines, 12 beers, 18 soft drinks and 14 flavoured waters. Because there is no reference procedure established for this purpose, three different optical methods were used to analyse these samples: Total Radical trapping Antioxidant Parameter (TRAP), Trolox Equivalent Antioxidant Capacity (TEAC) and Ferric ion Reducing Antioxidant Parameter (FRAP). These methods differ on the chemical background and nature of redox system. The TRAP method involves the transfer of hydrogen atoms while TEAC and FRAP involves electron transfer reactions. The AC was also assessed against three antioxidants of reference, Ascorbic acid (AA), Gallic acid (GA) and 6-hydroxy-2,5,7,8-tetramethyl- 2-carboxylic acid (Trolox). The results obtained were analyzed statistically. Anova one-way tests were applied to all results and suggested that methods and standards exhibited significant statistical differences. The possible effect of sample features in the AC, such as gas, flavours, food colouring, sweeteners, acidity regulators, preservatives, stabilizers, vitamins, juice percentage, alcohol percentage, antioxidants and the colour was also investigated. The AC levels seemed to change with brand, kind of antioxidants added, and kind of flavour, depending on the sample. In general, higher ACs were obtained for FRAP as method, and beer for kind of sample, and the standard expressing the smaller AC values was GA.
Resumo:
The total antioxidant capacity (TAC) of 28 flavoured water samples was assessed by ferric reducing antioxidant potential (FRAP), oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC) and total reactive antioxidant potential (TRAP) methods. It was observed that flavoured waters had higher antioxidant activity than the corresponding natural ones. The observed differences were attributed to flavours, juice and vitamins. Generally, higher TAC contents were obtained on lemon waters and lower values on guava and raspberry flavoured waters. Lower and higher TACs were obtained by TRAP and ORAC method, respectively. Statistical analysis suggested that vitamins and flavours increased the antioxidant content of the commercial waters.
Resumo:
Proceedings of the Scientific Meeting of the Portuguese Robotics Open 2004