71 resultados para Generalized Riemann-Liouville Fractional Derivative


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of fractional calculus goes back to the beginning of the theory of differential calculus, but its application received attention only recently. In the area of automatic control some work was developed, but the proposed algorithms are still in a research stage. This paper discusses a novel method, with two degrees of freedom, for the design of fractional discrete-time derivatives. The performance of several approximations of fractional derivatives is investigated in the perspective of nonlinear system control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the describing function (DF) of systems constituted by a mass subjected to nonlinear friction. The friction force is decomposed into two components, namely, the viscous and the Coulomb friction. The system dynamics is analyzed in the DF perspective revealing a fractional-order behavior. The reliability of the DF method is evaluated through the signal harmonic contents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, significant research in the field of electrochemistry was developed. The performance of electrical devices, depending on the processes of the electrolytes, was described and the physical origin of each parameter was established. However, the influence of the irregularity of the electrodes was not a subject of study and only recently this problem became relevant in the viewpoint of fractional calculus. This paper describes an electrolytic process in the perspective of fractional order capacitors. In this line of thought, are developed several experiments for measuring the electrical impedance of the devices. The results are analyzed through the frequency response, revealing capacitances of fractional order that can constitute an alternative to the classical integer order elements. Fractional order electric circuits are used to model and study the performance of the electrolyte processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of differentiation and integration to non-integer order has its origins in the seventeen century. However, only in the second-half of the twenty century appeared the first applications related to the area of control theory. In this paper we consider the study of a heat diffusion system based on the application of the fractional calculus concepts. In this perspective, several control methodologies are investigated and compared. Simulations are presented assessing the performance of the proposed fractional-order algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena. The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm for establishing the fractional order electrical potential and analyzes its characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional dynamics is a growing topic in theoretical and experimental scientific research. A classical problem is the initialization required by fractional operators. While the problem is clear from the mathematical point of view, it constitutes a challenge in applied sciences. This paper addresses the problem of initialization and its effect upon dynamical system simulation when adopting numerical approximations. The results are compatible with system dynamics and clarify the formulation of adequate values for the initial conditions in numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pioneers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabetical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul Lévy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the dynamical properties of systems with backlash and impact phenomena. This type of non-linearity can be tackled in the perspective of the fractional calculus theory. Fractional and integer order models are compared and their influence upon the emerging dynamics is analysed. It is demonstrated that fractional models can memorize dynamical effects due to multiple micro-collisions.