51 resultados para Evolutionary algorithm, Parameter identification, rolling element bearings, Genetic algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A composição musical é um tema de muito interesse para a computação evolucionária dentro da área da inteligência artificial. É uma área que tem sofrido vários desenvolvimentos ao longo dos últimos anos pois o interesse em que hajam computadores que façam obras musicais é deveras aliciante. Este trabalho tem por objectivo realizar mais um passo nesse sentido. Assim, foi desenvolvida uma aplicação informática que realiza composições musicais de dois géneros distintos: Músicas Infantis e Músicas Blues. A aplicação foi implementada com recurso aos Algoritmos Genéticos, que são os algoritmos evolucionários mais populares da área da computação evolucionária. O trabalho foi estruturado em duas fases de desenvolvimento. Na primeira fase, realizou-se um levantamento estatístico sobre as características específicas de cada um dos géneros musicais. Analisaram-se quinze músicas de cada género musical, com o intuito de se chegar a uma proporção do uso que cada nota tem em cada um dos casos. Na segunda fase, desenvolveu-se o software que compõe as músicas com implementação de um algoritmo genético. Além disso, foi também desenvolvida uma interface gráfica que permite ao utilizador a escolha do género musical que pretende compor. O algoritmo genético começa por gerar uma população inicial de potenciais soluções de acordo com a escolha do utilizador, realizando, de seguida, o ciclo que caracteriza o algoritmo genético. A população inicial é constituída por soluções que seguem as regras que foram implementadas de acordo com os dados recolhidos ao longo da primeira fase. Foi também implementada uma interface de avaliação, através da qual, o utilizador pode ouvir cada uma das músicas para posterior avaliação em termos de fitness. O estado de evolução do algoritmo é apresentado, numa segunda interface, a qual facilita a clareza e justiça na avaliação ao longo de todo o processo. Esta última apresenta informação sobre a média das fitness da geração anterior e actual, sendo assim possível ter uma noção da evolução do algoritmo, no sentido de se obterem resultados satisfatórios no que diz respeito às composições musicais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apresenta-se nesta tese uma revisão da literatura sobre a modelação de semicondutores de potência baseada na física e posterior análise de desempenho de dois métodos estocásticos, Particle Swarm Optimizaton (PSO) e Simulated Annealing (SA), quando utilizado para identificação eficiente de parâmetros de modelos de dispositivos semicondutores de potência, baseado na física. O conhecimento dos valores destes parâmetros, para cada dispositivo, é fundamental para uma simulação precisa do comportamento dinâmico do semicondutor. Os parâmetros são extraídos passo-a-passo durante simulação transiente e desempenham um papel relevante. Uma outra abordagem interessante nesta tese relaciona-se com o facto de que nos últimos anos, os métodos de modelação para dispositivos de potência têm emergido, com alta precisão e baixo tempo de execução baseado na Equação de Difusão Ambipolar (EDA) para díodos de potência e implementação no MATLAB numa estratégia de optimização formal. A equação da EDA é resolvida numericamente sob várias condições de injeções e o modelo é desenvolvido e implementado como um subcircuito no simulador IsSpice. Larguras de camada de depleção, área total do dispositivo, nível de dopagem, entre outras, são alguns dos parâmetros extraídos do modelo. Extração de parâmetros é uma parte importante de desenvolvimento de modelo. O objectivo de extração de parâmetros e otimização é determinar tais valores de parâmetros de modelo de dispositivo que minimiza as diferenças entre um conjunto de características medidas e resultados obtidos pela simulação de modelo de dispositivo. Este processo de minimização é frequentemente chamado de ajuste de características de modelos para dados de medição. O algoritmo implementado, PSO é uma técnica de heurística de otimização promissora, eficiente e recentemente proposta por Kennedy e Eberhart, baseado no comportamento social. As técnicas propostas são encontradas para serem robustas e capazes de alcançar uma solução que é caracterizada para ser precisa e global. Comparada com algoritmo SA já realizada, o desempenho da técnica proposta tem sido testado utilizando dados experimentais para extrair parâmetros de dispositivos reais das características I-V medidas. Para validar o modelo, comparação entre resultados de modelo desenvolvido com um outro modelo já desenvolvido são apresentados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the performance of a Genetic Algorithm using two new concepts, namely a static fitness function including a discontinuity measure and a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. In both cases, experiments reveal superior results in terms of speed and convergence to achieve a solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.