55 resultados para Dynamic breast MRI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A função de escalonamento desempenha um papel importante nos sistemas de produção. Os sistemas de escalonamento têm como objetivo gerar um plano de escalonamento que permite gerir de uma forma eficiente um conjunto de tarefas que necessitam de ser executadas no mesmo período de tempo pelos mesmos recursos. Contudo, adaptação dinâmica e otimização é uma necessidade crítica em sistemas de escalonamento, uma vez que as organizações de produção têm uma natureza dinâmica. Nestas organizações ocorrem distúrbios nas condições requisitos de trabalho regularmente e de forma inesperada. Alguns exemplos destes distúrbios são: surgimento de uma nova tarefa, cancelamento de uma tarefa, alteração na data de entrega, entre outros. Estes eventos dinâmicos devem ser tidos em conta, uma vez que podem influenciar o plano criado, tornando-o ineficiente. Portanto, ambientes de produção necessitam de resposta imediata para estes eventos, usando um método de reescalonamento em tempo real, para minimizar o efeito destes eventos dinâmicos no sistema de produção. Deste modo, os sistemas de escalonamento devem de uma forma automática e inteligente, ser capazes de adaptar o plano de escalonamento que a organização está a seguir aos eventos inesperados em tempo real. Esta dissertação aborda o problema de incorporar novas tarefas num plano de escalonamento já existente. Deste modo, é proposta uma abordagem de otimização – Hiper-heurística baseada em Seleção Construtiva para Escalonamento Dinâmico- para lidar com eventos dinâmicos que podem ocorrer num ambiente de produção, a fim de manter o plano de escalonamento, o mais robusto possível. Esta abordagem é inspirada em computação evolutiva e hiper-heurísticas. Do estudo computacional realizado foi possível concluir que o uso da hiper-heurística de seleção construtiva pode ser vantajoso na resolução de problemas de otimização de adaptação dinâmica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE International Conference on Cyber Physical Systems, Networks and Applications (CPSNA'15), Hong Kong, China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human exposure to persistent organic pollutants (POPs) is a certainty, even to long banned pesticides like o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), and its metabolites p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), and p,p′-dichlorodiphenyldichloroethane (p,p′-DDD). POPs are known to be particularly toxic and have been associated with endocrine-disrupting effects in several mammals, including humans even at very low doses. As environmental estrogens, they could play a critical role in carcinogenesis, such as in breast cancer. With the purpose of evaluating their effect on breast cancer biology, o,p′-DDT, p,p′-DDE, and p,p′-DDD (50–1000 nM) were tested on two human breast adenocarcinoma cell lines: MCF-7 expressing estrogen receptor (ER) α and MDA-MB-231 negative for ERα, regarding cell proliferation and viability in addition to their invasive potential. Cell proliferation and viability were not equally affected by these compounds. In MCF-7 cells, the compounds were able to decrease cell proliferation and viability. On the other hand, no evident response was observed in treated MDA-MB-231 cells. Concerning the invasive potential, the less invasive cell line, MCF-7, had its invasion potential significantly induced, while the more invasive cell line MDA-MB-231, had its invasion potential dramatically reduced in the presence of the tested compounds. Altogether, the results showed that these compounds were able to modulate several cancer-related processes, namely in breast cancer cell lines, and underline the relevance of POP exposure to the risk of cancer development and progression, unraveling distinct pathways of action of these compounds on tumor cell biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EMC2 finds solutions for dynamic adaptability in open systems. It provides handling of mixed criticality multicore applications in r eal-time conditions, withscalability and utmost flexibility, full-scale deployment and management of integrated tool chains, through the entire lifecycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a dynamic setting-price duopoly model in which a dominant (leader) firm moves first and a subordinate (follower) firm moves second. We suppose that each firm has two different technologies, and uses one of them according to a certain probability distribution. The use of either one or the other technology affects the unitary production cost. We analyse the effect of the production costs uncertainty on the profits of the firms, for different values of the intercept demand parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Container Loading Problem (CLP) literature has traditionally evaluated the dynamic stability of cargo by applying two metrics to box arrangements: the mean number of boxes supporting the items excluding those placed directly on the floor (M1) and the percentage of boxes with insufficient lateral support (M2). However, these metrics, that aim to be proxies for cargo stability during transportation, fail to translate real-world cargo conditions of dynamic stability. In this paper two new performance indicators are proposed to evaluate the dynamic stability of cargo arrangements: the number of fallen boxes (NFB) and the number of boxes within the Damage Boundary Curve fragility test (NB_DBC). Using 1500 solutions for well-known problem instances found in the literature, these new performance indicators are evaluated using a physics simulation tool (StableCargo), replacing the real-world transportation by a truck with a simulation of the dynamic behaviour of container loading arrangements. Two new dynamic stability metrics that can be integrated within any container loading algorithm are also proposed. The metrics are analytical models of the proposed stability performance indicators, computed by multiple linear regression. Pearson’s r correlation coefficient was used as an evaluation parameter for the performance of the models. The extensive computational results show that the proposed metrics are better proxies for dynamic stability in the CLP than the previous widely used metrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allied to an epidemiological study of population of the Senology Unit of Braga’s Hospital that have been diagnosed with malignant breast cancer, we describe the progression in time of repeated measurements of tumor marker Carcinoembryonic antigen (CEA). Our main purpose is to describe the progression of this tumor marker as a function of possible risk factors and, hence, to understand how these risk factors influences that progression. The response variable, values of CEA, was analyzed making use of longitudinal models, testing for different correlation structures. The same covariates used in a previous survival analysis were considered in the longitudinal model. The reference time used was time from diagnose until death from breast cancer. For diagnostic of the models fitted we have used empirical and theoretical variograms. To evaluate the fixed term of the longitudinal model we have tested for a changing point on the effect of time on the tumor marker progression. A longitudinal model was also fitted only to the subset of patients that died from breast cancer, using the reference time as time from date of death until blood test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.