55 resultados para Diamond-like Carbon
Resumo:
Chemical sensors and biosensors are widely used to detect various kinds of protein target biomolecules. Molecularly Imprinted Polymers (MIPs) have raised great interest in this area, because these act as antibody-like recognition materials, with high affinity to the template molecule. Compared to natural antibodies, these are also of lower cost and higher stability. There are different types of supports used to carry MIP materials, mostly of these made of gold, favourably assembled on a Screen Printed Electrode (SPE) strategy. For this work a new kind of support for the sensing layer was developed: conductive paper. This support was made by modifying first cellulose paper with paraffin wax (to make it waterproof), and casting a carbon-ink on it afterwards, to turn it conductive. The SPAM approach previously reported in1 was employed herein to assemble to MIP sensing material on the conductive paper. The selected charged monomers were (vinylbenzyl) trimethlammonium chloride (positive charge) or vinylbenzoic acid (negative charge), used to generate binding positions with single-type charge (positive or negative). The non-specific binding area of the MIP layer was assembled by chronoamperometry-assisted polymerization (at 1 V, for 60, 120 or 180 seconds) of vinylbenzoate, cross-linked with ethylene glycol vinyl ether. The BSA biomolecules lying within the polymeric matrix were removed by Proteinase K action. All preparation stages of the MIP assembly were followed by FTIR, Raman spectroscopy and, electrochemical analysis. In general, the best results were obtained for longer polymerization times and positively charged binding sites (which was consistent with a negatively-charged protein under physiological pH, as BSA). Linear responses against BSA concentration ranged from 0.005 to 100 mg/mL, in PBS buffer standard solutions. The sensor was further calibrated in standard solutions that were prepared in synthetic or real urine, and the analytical response became more sensitive and stable. Compared to the literature, the detection capability of the developed device is better than most of the reported electrodes. Overall, the simplicity, low cost and good analytical performance of the BSA SPE device, prepared with positively charged binding positions, seems a suitable approach for practical application in clinical context. Further studies with real samples are required, as well as gathering with electronic-supporting devices to allow on-site readings.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
Microcystin-LR (MC-LR) is a dangerous toxin found in environmental waters, quantified by high performance liquid chromatography and/or enzyme-linked immunosorbent assays. Quick, low cost and on-site analysis is thus required to ensure human safety and wide screening programs. This work proposes label-free potentiometric sensors made of solid-contact electrodes coated with a surface imprinted polymer on the surface of Multi-Walled Carbon NanoTubes (CNTs) incorporated in a polyvinyl chloride membrane. The imprinting effect was checked by using non-imprinted materials. The MC-LR sensitive sensors were evaluated, characterized and applied successfully in spiked environmental waters. The presented method offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.
Resumo:
A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
Dragonflies demonstrate unique and superior flight performances than most of the other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper it is studied the dynamics of a dragonfly-inspired robot. The system performance is analyzed in terms of time response and robustness. The development of computational simulation based on the dynamics of the robotic dragonfly allows the test of different control algorithms. We study different movement, the dynamics and the level of dexterity in wing motion of the dragonfly. The results are positive for the construction of flying platforms that effectively mimic the kinematics and dynamics of dragonflies and potentially exhibit superior flight performance than existing flying platforms.
Resumo:
The trend to have more cooperative play and the increase of game dynamics in Robocup MSL League motivates the improvement of skills for ball passing and reception. Currently the majority of the MSL teams uses ball handling devices with rollers to have more precise kicks but limiting the capability to kick a moving ball without stopping it and grabbing it. This paper addresses the problem to receive and kick a fast moving ball without having to grab it with a roller based ball handling device. Here, the main difficulty is the high latency and low rate of the measurements of the ball sensing systems, based in vision or laser scanner sensors.Our robots use a geared leg coupled to a motor that acts simultaneously as the kicking device and low level ball sensor. This paper proposes a new method to improve the capability for ball sensing in the kicker, by combining high rate measurements from the torque and energy in the motor and angular position of the kicker leg. The developed method endows the kicker device with an effective ball detection ability, validated in several game situations like in an interception to a fast pass or when chasing the ball where the relative speed from robot to ball is low. This can be used to optimize the kick instant or by the embedded kicker control system to absorb the ball energy.
Resumo:
Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.
Resumo:
Durante as últimas décadas, os materiais compósitos têm substituído com sucesso os materiais tradicionais em muitas aplicações de engenharia, muito devido às excelentes propriedades que se conseguem obter com a combinação de materiais diferentes. Nos compósitos reforçados com fibras longas ou contínuas tem-se verificado, ao longo dos últimos anos, um aumento do uso de matrizes termoplásticas, fruto de várias vantagens associadas, como o facto de serem bastante mais ecológicas, comparativamente às termoendurecíveis. No entanto, este aumento está muito dependente do desenvolvimento de novas tecnologias de processamento, pois a elevada viscosidade dos termoplásticos, comparativamente aos termoendurecíveis, dificulta significativamente o processo. Muitos equipamentos de produção de termoplásticos são resultado de adaptações de equipamentos de produção de termoendurecíveis, onde normalmente é necessário adicionar fornos de pré-aquecimento. Neste trabalho, pretendeu-se produzir pré-impregnados de fibras contínuas com matriz termoplástica, por deposição a seco de polímero em pó sobre fibras de reforço (denominados por towpreg) para, posteriormente, serem transformados por pultrusão e caracterizados. As matérias-primas utilizadas foram: Polipropileno (PP) como matriz termoplástica e fibra de carbono como reforço. Por forma a melhorar as propriedades finais do compósito, foram otimizadas as condições de processamento na produção dos towpregs, estudando-se a influência da variação dos parâmetros de processamento no teor de polímero presente nestes, tendo como objetivo teores mássicos de polímero superiores a 30%. A condição ótima e a influência dos parâmetros de processamento foram obtidas com o auxílio do Método de Taguchi. Os perfis produzidos por pultrusão foram sujeitos a ensaios de flexão, de forma a obter as suas propriedades quando sujeitos a esse tipo de esforço. Foram também realizados ensaios de calcinação de forma a obter as frações mássicas de fibra e polímero presentes no compósito final. Sabidas as frações mássicas, converteramse em frações volúmicas e obtiveram-se as propriedades teoricamente esperadas através da Lei das Misturas e compararam-se com as obtidas experimentalmente. As propriedades obtidas foram também comparadas com as de outros compósitos pultrudidos.