82 resultados para smart grid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reactive power management in distribution network with large penetration of distributed energy resources is an important task in future power systems. The control of reactive power allows the inclusion of more distributed recourses and a more efficient operation of distributed network. Currently, the reactive power is only controlled in large power plants and in high and very high voltage substations. In this paper, several reactive power control strategies considering a smart grids paradigm are proposed. In this context, the management of distributed energy resources and of the distribution network by an aggregator, namely Virtual Power Player (VPP), is proposed and implemented in a MAS simulation tool. The proposed methods have been computationally implemented and tested using a 32-bus distribution network with intensive use of distributed resources, mainly the distributed generation based on renewable resources. Results concerning the evaluation of the reactive power management algorithms are also presented and compared.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

De forma a não comprometer o conforto ou a qualidade de vida, nos dias de hoje, é obrigatório que a energia elétrica esteja presente. Sendo indispensável, torna-se necessário assegurar que a sua distribuição seja feita da forma mais qualitativa possível. Uma resposta rápida e eficaz a possíveis falhas que ocorram na rede, irá garantir a tal qualidade de serviço desejada. Para isso, a automatização dos processos é uma grande evolução e objetivo de concretização do setor elétrico. Neste contexto surge o conceito de Smart Grid, que tem como principal objetivo a combinação entre o setor elétrico e a evolução da tecnologia. A par desta característica, estes tipos de redes vêm também trazer evoluções no âmbito ambiental, pois a produção de energia elétrica é feita, maioritariamente, por fontes de energia renovável. Este projeto incide na análise das vantagens técnicas e económicas da inclusão de equipamentos que detêm capacidades de armazenamento de energia, as Baterias de Armazenamento de Energia (BAE), neste tipo de redes. Para tal, procedeu-se à utilização do método do Despacho Económico, que tem como principal objetivo a determinação dos níveis de produção de todas as unidades geradoras do sistema, satisfazendo a carga, ao mais baixo custo de produção. Com este método, foram criados vários cenários de estudo com vista a validar todo o propósito deste projeto. Nesta dissertação, é também realizado um estudo de viabilidade económica destes equipamentos de armazenamento de energia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of new distributed energy resources, based on natural intermittent power sources, in power systems imposes the development of new adequate operation management and control methods. This paper proposes a short-term Energy Resource Management (ERM) methodology performed in two phases. The first one addresses the hour-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. Both phases consider the day-ahead resource scheduling solution. The ERM scheduling is formulated as an optimization problem that aims to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixed-integer non-linear programming approach and by a heuristic approach based on genetic algorithms. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units has been implemented in a PSCADbased simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The smart grid concept appears as a suitable solution to guarantee the power system operation in the new electricity paradigm with electricity markets and integration of large amounts of Distributed Energy Resources (DERs). Virtual Power Player (VPP) will have a significant importance in the management of a smart grid. In the context of this new paradigm, Electric Vehicles (EVs) rise as a good available resource to be used as a DER by a VPP. This paper presents the application of the Simulated Annealing (SA) technique to solve the Energy Resource Management (ERM) of a VPP. It is also presented a new heuristic approach to intelligently handle the charge and discharge of the EVs. This heuristic process is incorporated in the SA technique, in order to improve the results of the ERM. The case study shows the results of the ERM for a 33-bus distribution network with three different EVs penetration levels, i. e., with 1000, 2000 and 3000 EVs. The results of the proposed adaptation of the SA technique are compared with a previous SA version and a deterministic technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process it is necessary the update of generation and consumption operation and of the storage and electric vehicles storage status. Besides the new operation condition, it is important more accurate forecast values of wind generation and of consumption using results of in short-term and very short-term methods. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing importance given by environmental policies to the dissemination and use of wind power has led to its fast and large integration in power systems. In most cases, this integration has been done in an intensive way, causing several impacts and challenges in current and future power systems operation and planning. One of these challenges is dealing with the system conditions in which the available wind power is higher than the system demand. This is one of the possible applications of demand response, which is a very promising resource in the context of competitive environments that integrates even more amounts of distributed energy resources, as well as new players. The methodology proposed aims the maximization of the social welfare in a smart grid operated by a virtual power player that manages the available energy resources. When facing excessive wind power generation availability, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. The proposed method is especially useful when actual and day-ahead wind forecast differ significantly. The proposed method has been computationally implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20310 consumers and 548 distributed generators, some of them with must take contracts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In smart grids context, the distributed generation units based in renewable resources, play an important rule. The photovoltaic solar units are a technology in evolution and their prices decrease significantly in recent years due to the high penetration of this technology in the low voltage and medium voltage networks supported by governmental policies and incentives. This paper proposes a methodology to determine the maximum penetration of photovoltaic units in a distribution network. The paper presents a case study, with four different scenarios, that considers a 32-bus medium voltage distribution network and the inclusion storage units.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A supervisory control and data acquisition (SCADA) system is an integrated platform that incorporates several components and it has been applied in the field of power systems and several engineering applications to monitor, operate and control a lot of processes. In the future electrical networks, SCADA systems are essential for an intelligent management of resources like distributed generation and demand response, implemented in the smart grid context. This paper presents a SCADA system for a typical residential house. The application is implemented on MOVICON™11 software. The main objective is to manage the residential consumption, reducing or curtailing loads to keep the power consumption in or below a specified setpoint, imposed by the costumer and the generation availability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.