43 resultados para sensor grid database system
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.
Resumo:
The power systems operation in the smart grid context increases significantly the complexity of their management. New approaches for ancillary services procurement are essential to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. These approaches should include market mechanisms which allow the participation of small and medium distributed energy resources players in a competitive market environment. In this paper, an energy and ancillary services joint market model used by an aggregator is proposed, considering bids of several types of distributed energy resources. In order to improve economic efficiency in the market, ancillary services cascading market mechanism is also considered in the model. The proposed model is included in MASCEM – a multi-agent system electricity market simulator. A case study considering a distribution network with high penetration of distributed energy resources is presented.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
The Smart Grid environment allows the integration of resources of small and medium players through the use of Demand Response programs. Despite the clear advantages for the grid, the integration of consumers must be carefully done. This paper proposes a system which simulates small and medium players. The system is essential to produce tests and studies about the active participation of small and medium players in the Smart Grid environment. When comparing to similar systems, the advantages comprise the capability to deal with three types of loads – virtual, contextual and real. It can have several loads optimization modules and it can run in real time. The use of modules and the dynamic configuration of the player results in a system which can represent different players in an easy and independent way. This paper describes the system and all its capabilities.
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
The evolution of the electrical grid into a smart grid, allowing user production, storage and exchange of energy, remote control of appliances, and in general optimizations over how the energy is managed and consumed, is also an evolution into a complex Information and Communication Technology (ICT) system. With the goal of promoting an integrated and interoperable smart grid, a number of organizations all over the world started uncoordinated standardization activities, which caused the emergence of a large number of incompatible architectures and standards. There are now new standardization activities which have the goal of organizing existing standards and produce best practices to choose the right approach(es) to be employed in specific smart grid designs. This paper follows the lead of NIST and ETSI/CEN/CENELEC approaches in trying to provide taxonomy of existing solutions; our contribution reviews and relates current ICT state-of-the-art, with the objective of forecasting future trends based on the orientation of current efforts and on relationships between them. The resulting taxonomy provides guidelines for further studies of the architectures, and highlights how the standards in the last mile of the smart grid are converging to common solutions to improve ICT infrastructure interoperability.
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
in RoboCup 2007: Robot Soccer World Cup XI
Resumo:
In the last few years the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how good is a voice when the application is a speech based interface. In this paper we present a new automatic voice pleasantness classification system based on prosodic and acoustic patterns of voice preference. Our study is based on a multi-language database composed by female voices. In the objective performance evaluation the system achieved a 7.3% error rate.
Resumo:
As technology advances not only do new standards and programming styles appear but also some of the previously established ones gain relevance. In a new Internet paradigm where interconnection between small devices is key to the development of new businesses and scientific advancement there is the need to find simple solutions that anyone can implement in order to allow ideas to become more than that, ideas. Open-source software is still alive and well, especially in the area of the Internet of Things. This opens windows for many low capital entrepreneurs to experiment with their ideas and actually develop prototypes, which can help identify problems with a project or shine light on possible new features and interactions. As programming becomes more and more popular between people of fields not related to software there is the need for guidance in developing something other than basic algorithms, which is where this thesis comes in: A comprehensive document explaining the challenges and available choices of developing a sensor data and message delivery system, which scales well and implements the delivery of critical messages. Modularity and extensibility were also given much importance, making this an affordable tool for anyone that wants to build a sensor network of the kind.