35 resultados para requirement engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The internal impedance of a wire is the function of the frequency. In a conductor, where the conductivity is sufficiently high, the displacement current density can be neglected. In this case, the conduction current density is given by the product of the electric field and the conductance. One of the aspects the high-frequency effects is the skin effect (SE). The fundamental problem with SE is it attenuates the higher frequency components of a signal. The SE was first verified by Kelvin in 1887. Since then many researchers developed work on the subject and presently a comprehensive physical model, based on the Maxwell equations, is well established. The Maxwell formalism plays a fundamental role in the electromagnetic theory. These equations lead to the derivation of mathematical descriptions useful in many applications in physics and engineering. Maxwell is generally regarded as the 19th century scientist who had the greatest influence on 20th century physics, making contributions to the fundamental models of nature. The Maxwell equations involve only the integer-order calculus and, therefore, it is natural that the resulting classical models adopted in electrical engineering reflect this perspective. Recently, a closer look of some phenomas present in electrical systems and the motivation towards the development of precise models, seem to point out the requirement for a fractional calculus approach. Bearing these ideas in mind, in this study we address the SE and we re-evaluate the results demonstrating its fractional-order nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent Advances in Mechanics and Materials in Design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesively bonded techniques are an attractive option to repair aluminium structures, compared to more traditional methods. Actually, as a result of the improvement in the mechanical characteristics of adhesives, adhesive bonding has progressively replaced the traditional joining methods. There are several bonded repair configurations, as single-strap, double-strap and scarf. Compared with strap repairs, scarf repairs have the advantages of a higher efficiency and the absence of aerodynamic disturbance. The higher efficiency is caused by the elimination of the significant joint eccentricities of strap repairs. Moreover, stress distributions along the bond length are more uniform, due to tapering of the scarf edges. The main disadvantages of this technique are the difficult machining of the surfaces, associated costs and requirement of specialised labour. This work reports on an experimental and numerical study of the tensile behaviour of two-dimensional (2D) scarf repairs of aluminium structures bonded with the ductile epoxy adhesive Araldite® 2015. The numerical analysis, by Finite Elements (FE), was performed in Abaqus® and used cohesive zone models (CZM) for the simulation of damage onset and growth in the adhesive layer, thus enabling the strength prediction of the repairs. A parametric study was performed on the scarf angle (α) and different configurations of external reinforcement (applied on one or two sides of the repair, and also different reinforcement lengths). The obtained results allowed the establishment of design guidelines for repairing, showing that the use of external reinforcements enables increasing α for equal strength recovery, which makes the repair procedure easier. The numerical technique was accurate in predicting the repairs’ strength, enabling its use for design and optimisation purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Massive Open Online Courses (MOOC) are gaining prominence in transversal teaching-learning strategies. However, there are many issues still debated, namely assessment, recognized largely as a cornerstone in Education. The large number of students involved requires a redefinition of strategies that often use approaches based on tasks or challenging projects. In these conditions and due to this approach, assessment is made through peer-reviewed assignments and quizzes online. The peer-reviewed assignments are often based upon sample answers or topics, which guide the student in the task of evaluating peers. This chapter analyzes the grading and evaluation in MOOCs, especially in science and engineering courses, within the context of education and grading methodologies and discusses possible perspectives to pursue grading quality in massive e-learning courses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.