92 resultados para power system simulation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyber-Physical Intelligence is a new concept integrating Cyber-Physical Systems and Intelligent Systems. The paradigm is centered in incorporating intelligent behavior in cyber-physical systems, until now too oriented to the operational technological aspects. In this paper we will describe the use of Cyber-Physical Intelligence in the context of Power Systems, namely in the use of Intelligent SCADA (Supervisory Control and Data Acquisition) systems at different levels of the Power System, from the Power Generation, Transmission, and Distribution Control Centers till the customers houses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power systems are planed and operated according to the optimization of the available resources. Traditionally these tasks were mostly undertaken in a centralized way which is no longer adequate in a competitive environment. Demand response can play a very relevant role in this context but adequate tools to negotiate this kind of resources are required. This paper presents an approach to deal with these issues, by using a multi-agent simulator able to model demand side players and simulate their strategic behavior. The paper includes an illustrative case study that considers an incident situation. The distribution company is able to reduce load curtailment due to load flexibility contracts previously established with demand side players.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyber-Physical Systems and Ambient Intelligence are two of the most important and emerging paradigms of our days. The introduction of renewable sources gave origin to a completely different dimension of the distribution generation problem. On the other hand, Electricity Markets introduced a different dimension in the complexity, the economic dimension. Our goal is to study how to proceed with the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The integration of growing amounts of distributed generation in power systems, namely at distribution networks level, has been fostered by energy policies in several countries around the world, including in Europe. This intensive integration of distributed, non-dispatchable, and natural sources based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used to supply additional demand. New policies and market rules, as well as new players, are needed in order to competitively integrate all the resources. The methodology proposed in this paper aims at the maximization of the social welfare in a distribution network operated by a virtual power player that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual and day-ahead resources forecast differ significantly. The distribution network characteristics and concerns are addressed by including the network constraints in the optimization model. The proposed methodology has been implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.