181 resultados para multi-agent incremental negotiation scheme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets worldwide suffered profound transformations. The privatization of previously nationally owned systems; the deregulation of privately owned systems that were regulated; and the strong interconnection of national systems, are some examples of such transformations [1, 2]. In general, competitive environments, as is the case of electricity markets, require good decision-support tools to assist players in their decisions. Relevant research is being undertaken in this field, namely concerning player modeling and simulation, strategic bidding and decision-support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-agent approaches have been widely used to model complex systems of distributed nature with a large amount of interactions between the involved entities. Power systems are a reference case, mainly due to the increasing use of distributed energy sources, largely based on renewable sources, which have potentiated huge changes in the power systems’ sector. Dealing with such a large scale integration of intermittent generation sources led to the emergence of several new players, as well as the development of new paradigms, such as the microgrid concept, and the evolution of demand response programs, which potentiate the active participation of consumers. This paper presents a multi-agent based simulation platform which models a microgrid environment, considering several different types of simulated players. These players interact with real physical installations, creating a realistic simulation environment with results that can be observed directly in the reality. A case study is presented considering players’ responses to a demand response event, resulting in an intelligent increase of consumption in order to face the wind generation surplus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a multi-agent brokerage platform for near real time advertising personalisation organised in three layers: user interface, agency and marketplace. The personalisation is based on the classification of viewer profiles and advertisements (ads). The goal is to provide viewers with a personalised advertising alignment during programme intervals. The enterprise interface agents upload new ads and negotiation profiles to producer agents and new user and negotiation profiles to distributor agents. The agency layer is composed of agents that represent ad producer and media distributor enterprises as well as the market regulator. The enterprise agents offer data upload and download operations as Web Services and register the specification of these interfaces at an UDDI registry for future discovery. The market agent supports the registration and deregistration of enterprise delegate agents at the marketplace. This paper addresses the marketplace layer, an agent-based negotiation platform per se, where delegates of the relevant advertising agencies and programme distributors negotiate to create the advertising alignment that best fits a viewer profile and the advertising campaigns available. The whole brokerage platform is being developed in JADE, a multi-agent development platform. The delegate agents download the negotiation profile and upload the negotiation results from / to the corresponding enterprise agent. In the meanwhile, they negotiate using the Iterated Contract Net protocol. All tools and technologies used are open source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No decorrer dos últimos anos, os agentes (inteligentes) de software foram empregues como um método para colmatar as dificuldades associadas com a gestão, partilha e reutilização de um crescente volume de informação, enquanto as ontologias foram utilizadas para modelar essa mesma informação num formato semanticamente explícito e rico. À medida que a popularidade da Web Semântica aumenta e cada vez informação é partilhada sob a forma de ontologias, o problema de integração desta informação amplifica-se. Em semelhante contexto, não é expectável que dois agentes que pretendam cooperar utilizem a mesma ontologia para descrever a sua conceptualização do mundo. Inclusive pode revelar-se necessário que agentes interajam sem terem conhecimento prévio das ontologias utilizadas pelos restantes, sendo necessário que as conciliem em tempo de execução num processo comummente designado por Mapeamento de Ontologias [1]. O processo de mapeamento de ontologias é normalmente oferecido como um serviço aos agentes de negócio, podendo ser requisitado sempre que seja necessário produzir um alinhamento. No entanto, tendo em conta que cada agente tem as suas próprias necessidades e objetivos, assim como a própria natureza subjetiva das ontologias que utilizam, é possível que tenham diferentes interesses relativamente ao processo de alinhamento e que, inclusive, recorram aos serviços de mapeamento que considerem mais convenientes [1]. Diferentes matchers podem produzir resultados distintos e até mesmo contraditórios, criando-se assim conflitos entre os agentes. É necessário que se proceda então a uma tentativa de resolução dos conflitos existentes através de um processo de negociação, de tal forma que os agentes possam chegar a um consenso relativamente às correspondências que devem ser utilizadas na tradução de mensagens a trocar. A resolução de conflitos é considerada uma métrica de grande importância no que diz respeito ao processo de negociação [2]: considera-se que existe uma maior confiança associada a um alinhamento quanto menor o número de conflitos por resolver no processo de negociação que o gerou. Desta forma, um alinhamento com um número elevado de conflitos por resolver apresenta uma confiança menor que o mesmo alinhamento associado a um número elevado de conflitos resolvidos. O processo de negociação para que dois ou mais agentes gerem e concordem com um alinhamento é denominado de Negociação de Mapeamentos de Ontologias. À data existem duas abordagens propostas na literatura: (i) baseadas em Argumentação (e.g. [3] [4]) e (ii) baseadas em Relaxamento [5] [6]. Cada uma das propostas expostas apresenta um número de vantagens e limitações. Foram propostas várias formas de combinação das duas técnicas [2], com o objetivo de beneficiar das vantagens oferecidas e colmatar as suas limitações. No entanto, à data, não são conhecidas experiências documentadas que possam provar tal afirmação e, como tal, não é possível atestar que tais combinações tragam, de facto, o benefício que pretendem. O trabalho aqui apresentado pretende providenciar tais experiências e verificar se a afirmação de melhorias em relação aos resultados das técnicas individuais se mantém. Com o objetivo de permitir a combinação e de colmatar as falhas identificadas, foi proposta uma nova abordagem baseada em Relaxamento, que é posteriormente combinada com as abordagens baseadas em Argumentação. Os seus resultados, juntamente com os da combinação, são aqui apresentados e discutidos, sendo possível identificar diferenças nos resultados gerados por combinações diferentes e possíveis contextos de utilização.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in very helpful sophisticated tools. This paper presents a new methodology for the management of coalitions in electricity markets. This approach is tested using the multi-agent market simulator MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), taking advantage of its ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market and internally, with their members in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. A case study using real data from the Iberian Electricity Market is performed to validate and illustrate the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contextualization is critical in every decision making process. Adequate responses to problems depend not only on the variables with direct influence on the outcomes, but also on a correct contextualization of the problem regarding the surrounding environment. Electricity markets are dynamic environments with increasing complexity, potentiated by the last decades' restructuring process. Dealing with the growing complexity and competitiveness in this sector brought the need for using decision support tools. A solid example is MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), whose players' decisions are supported by another multiagent system – ALBidS (Adaptive Learning strategic Bidding System). ALBidS uses artificial intelligence techniques to endow market players with adaptive learning capabilities that allow them to achieve the best possible results in market negotiations. This paper studies the influence of context awareness in the decision making process of agents acting in electricity markets. A context analysis mechanism is proposed, considering important characteristics of each negotiation period, so that negotiating agents can adapt their acting strategies to different contexts. The main conclusion is that context-dependant responses improve the decision making process. Suiting actions to different contexts allows adapting the behaviour of negotiating entities to different circumstances, resulting in profitable outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents MASCEM - Multi-Agent Simulator for Electricity Markets improvement towards an enlarged model for Seller Agents coalitions. The simulator has been improved, both regarding its user interface and internal structure. The OOA, used as development platform, version was updated and the multi-agent model was adjusted for implementing and testing several negotiations regarding Seller agents’ coalitions. Seller coalitions are a very important subject regarding the increased relevance of Distributed Generation under liberalised electricity markets.