41 resultados para market capitalization
Resumo:
The deregulation of electricity markets has diversified the range of financial transaction modes between independent system operator (ISO), generation companies (GENCO) and load-serving entities (LSE) as the main interacting players of a day-ahead market (DAM). LSEs sell electricity to end-users and retail customers. The LSE that owns distributed generation (DG) or energy storage units can supply part of its serving loads when the nodal price of electricity rises. This opportunity stimulates them to have storage or generation facilities at the buses with higher locational marginal prices (LMP). The short-term advantage of this model is reducing the risk of financial losses for LSEs in DAMs and its long-term benefit for the LSEs and the whole system is market power mitigation by virtually increasing the price elasticity of demand. This model also enables the LSEs to manage the financial risks with a stochastic programming framework.
Resumo:
The power systems operation in the smart grid context increases significantly the complexity of their management. New approaches for ancillary services procurement are essential to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. These approaches should include market mechanisms which allow the participation of small and medium distributed energy resources players in a competitive market environment. In this paper, an energy and ancillary services joint market model used by an aggregator is proposed, considering bids of several types of distributed energy resources. In order to improve economic efficiency in the market, ancillary services cascading market mechanism is also considered in the model. The proposed model is included in MASCEM – a multi-agent system electricity market simulator. A case study considering a distribution network with high penetration of distributed energy resources is presented.
Resumo:
The energy sector in industrialized countries has been restructured in the last years, with the purpose of decreasing electricity prices through the increase in competition, and facilitating the integration of distributed energy resources. However, the restructuring process increased the complexity in market players' interactions and generated emerging problems and new issues to be addressed. In order to provide players with competitive advantage in the market, decision support tools that facilitate the study and understanding of these markets become extremely useful. In this context arises MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), a multi-agent based simulator that models real electricity markets. To reinforce MASCEM with the capability of recreating the electricity markets reality in the fullest possible extent, it is crucial to make it able to simulate as many market models and player types as possible. This paper presents a new negotiation model implemented in MASCEM based on the negotiation model used in day-ahead market (Elspot) of Nord Pool. This is a key module to study competitive electricity markets, as it presents well defined and distinct characteristics from the already implemented markets, and it is a reference electricity market in Europe (the one with the larger amount of traded power).
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.
Resumo:
Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.
Resumo:
Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.
Resumo:
This paper studies the impact of the energy upon electricity markets using Multidimensional Scaling (MDS). Data from major energy and electricity markets is considered. Several maps produced by MDS are presented and discussed revealing that this method is useful for understanding the correlation between them. Furthermore, the results help electricity markets agents hedging against Market Clearing Price (MCP) volatility.
Resumo:
This paper applies multidimensional scaling techniques and Fourier transform for visualizing possible time-varying correlations between 25 stock market values. The method is useful for observing clusters of stock markets with similar behavior.
Resumo:
We present a new deterministic dynamical model on the market size of Cournot competitions, based on Nash equilibria of R&D investment strategies to increase the size of the market of the firms at every period of the game. We compute the unique Nash equilibrium for the second subgame and the profit functions for both firms. Adding uncertainty to the R&D investment strategies, we get a new stochastic dynamical model and we analyse the importance of the uncertainty to reverse the initial advantage of one firm with respect to the other.
Resumo:
The electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution.
Resumo:
O intenso intercâmbio entre os países, resultante do processo de globalização, veio acrescer importância ao mercado de capitais. Os países em desenvolvimento procuram abrir as suas economias para receber investimentos externos. Quanto maior for o grau de desenvolvimento de uma economia mais ativo será o seu mercado de capitais. No entanto, tem-se verificado uma tendência de substituição de enfoque económico, que antes era mais dirigido ao planeamento empresarial para metas mais ligadas ao meio ambiente. O mercado de capitais é um sistema de distribuição de valores mobiliários cujo objectivo é proporcionar liquidez a títulos emitidos pelas empresas, com a finalidade de viabilizar o processo de capitalização desses papéis. O mercado de capitais é composto pelas bolsas de valores, sociedades corretoras e outras instituições financeiras que têm autorização da Comissão de Valores dos Mercados Mobiliários (CMVM). O mercado bolsista insere-se no mercado de capitais. Nesses mercados, é importante conseguir conjuntamente a maximização dos recursos (retornos) e minimização dos custos (riscos). O principal objectivo das bolsas de valores é promover um ambiente de negociação dos títulos e dos valores mobiliários das empresas. Muitos investidores têm a sua própria maneira de investir, consoante o perfil que cada um tem. Além do perfil dos investidores, é também pertinente analisar a questão do risco. Vaughan (1997) observa que, nos dias atuais, a questão da administração do risco está presente na vida de todos. Este trabalho tem o propósito de demonstrar a necessidade da utilização de ferramentas para a seleção de ativos e para a mensuração do risco e do retorno de aplicações de recursos financeiros nesses activos de mercados de capitais, por qualquer tipo de investidor, mais especificamente na compra de ações e montagem de uma carteira de investimento. Para isso usou-se o método de Elton e Gruber, analisou-se as rentabilidades, os riscos e os índices de desempenho de Treynor e Sharpe. Testes estatísticos para os retornos das ações foram executados visando analisar a aleatoriedade dos dados. Este trabalho conclui que pode haver vantagens na utilização do método de Elton e Gruber para os investidores propensos a utilzar ações de empresas socialmente responsáveis.