112 resultados para heat exchanger optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the optimal natural gas commitment for a known demand scenario. This study implies the best location of GSUs to supply all demands and the optimal allocation from sources to gas loads, through an appropriate transportation mode, in order to minimize total system costs. Our emphasis is on the formulation and use of a suitable optimization model, reflecting real-world operations and the constraints of natural gas systems. The mathematical model is based on a Lagrangean heuristic, using the Lagrangean relaxation, an efficient approach to solve the problem. Computational results are presented for Iberian and American natural gas systems, geographically organized in 65 and 88 load nodes, respectively. The location model results, supported by the computational application GasView, show the optimal location and allocation solution, system total costs and suggest a suitable gas transportation mode, presented in both numerical and graphic supports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avaliação do estado do gene Epidermal Growth Factor Receptor (EGFR), por Silver In Situ Hibridization (SISH), tem-se destacado como biomarcador preditivo na resposta à terapêutica. O principal objectivo foi optimizar a etapa de recuperação por calor da metodologia automatizada SISH Dual-Colour, em carcinomas pulmonares fixados em formol durante 24 e 72 horas. A optimização levou a um aumento da preservação do contorno nuclear e da intensidade e contraste dos sinais para os dois tempos de fixação, permitindo avaliar o estado do EGFR em 83,3% dos casos em estudo. A SISH Dual-Colour é uma alternativa para avaliar o estado do EGFR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. At this scenario, self-optimizing arise as the ability of the agent to monitor its state and performance and proactively tune itself to respond to environmental stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange multipliers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we solve Mathematical Programs with Complementarity Constraints using the hyperbolic smoothing strategy. Under this approach, the complementarity condition is relaxed through the use of the hyperbolic smoothing function, involving a positive parameter that can be decreased to zero. An iterative algorithm is implemented in MATLAB language and a set of AMPL problems from MacMPEC database were tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.