42 resultados para environment measurements
Resumo:
O presente trabalho de dissertação teve como objetivo a implementação de metodologias de Lean Management e avaliação do seu impacto no processo de Desenvolvimento de Produto. A abordagem utilizada consistiu em efetuar uma revisão da literatura e levantamento do Estado da Arte para obter a fundamentação teórica necessária à implementação de metodologias Lean. Prosseguiu com o levantamento da situação inicial da organização em estudo ao nível das atividades de desenvolvimento de produto, práticas de gestão documental e operacional e ainda de atividades de suporte através da realização de inquéritos e medições experimentais. Este conhecimento permitiu criar um modelo de referência para a implementação de Lean Management nesta área específica do desenvolvimento de produto. Após implementado, este modelo foi validado pela sua experimentação prática e recolha de indicadores. A implementação deste modelo de referência permitiu introduzir na Unidade de Desenvolvimento de Produto e Sistemas (DPS) da organização INEGI, as bases do pensamento Lean, contribuindo para a criação de um ambiente de Respeito pela Humanidade e de Melhoria Contínua. Neste ambiente foi possível obter ganhos qualitativos e quantitativos nas várias áreas em estudo, contribuindo de forma global para um aumento da eficiência e eficácia da DPS. Prevê-se que este aumento de eficiência represente um aumento da capacidade instalada na Organização, pela redução anual de 2290 horas de desperdício (6.5% da capacidade total da unidade) e pela redução significativa em custos operacionais. Algumas das implementações de melhoria propostas no decorrer deste trabalho, após verificado o seu sucesso, extravasaram a unidade em estudo e foram aplicadas transversalmente à da organização. Foram também obtidos ganhos qualitativos, tais como a normalização de práticas de gestão documental e a centralização e agilização de fluxos de informação. Isso permitiu um aumento de qualidade dos serviços prestados pela redução de correções e retrabalho. Adicionalmente, com o desenvolvimento de uma nova ferramenta que permite a monitorização do estado atual dos projetos a nível da sua percentagem de execução (cumprimento de objetivos), prazos e custos, bem como a estimação das datas de conclusão dos projetos possibilitando o replaneamento do projeto bem como a detecção atempada de desvios. A ferramenta permite também a criação de um histórico que identifica o esforço horário associado à realização das atividades/tarefas das várias áreas de Desenvolvimento de Produto e desta forma pode ser usada como suporte à orçamentação futura de atividades similares. No decorrer do projeto, foram também criados os mecanismos que permitem o cálculo de indicadores das competências técnicas e motivações intrínsecas individuais da equipa DPS. Estes indicadores podem ser usados na definição por parte dos gestores dos projetos da composição das equipas de trabalho, dos executantes de tarefas individuais do projeto e dos destinatários de ações de formação. Com esta informação é expectável que se consiga um maior aproveitamento do potencial humano e como consequência um aumento do desempenho e da satisfação pessoal dos recursos humanos da organização. Este caso de estudo veio demonstrar que o potencial de melhoria dos processos associados ao desenvolvimento de produto através de metodologias de Lean Management é muito significativo, e que estes resultam em ganhos visíveis para a organização bem como para os seus elementos individualmente.
Resumo:
The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.
Resumo:
Ergonomic interventions such as increased scheduled breaks or job rotation have been proposed to reduce upper limb muscle fatigue in repetitive low-load work. This review was performed to summarize and analyze the studies investigating the effect of job rotation and work-rest schemes, as well as, work pace, cycle time and duty cycle, on upper limb muscle fatigue. The effects of these work organization factors on subjective fatigue or discomfort were also analyzed. This review was based on relevant articles published in PubMed, Scopus and Web of Science. The studies included in this review were performed in humans and assessed muscle fatigue in upper limbs. 14 articles were included in the systematic review. Few studies were performed in a real work environment and the most common methods used to assess muscle fatigue were surface electromyography (EMG). No consistent results were found related to the effects of job rotation on muscle activity and subjective measurements of fatigue. Rest breaks had some positive effects, particularly in perceived discomfort. The increase in work pace reveals a higher muscular load in specific muscles. The duration of experiments and characteristics of participants appear to be the factors that most have influenced the results. Future research should be focused on the improvement of the experimental protocols and instrumentation, in order to the outcomes represent adequately the actual working conditions. Relevance to industry: Introducing more physical workload variation in low-load repetitive work is considered an effective ergonomic intervention against muscle fatigue and musculoskeletal disorders in industry. Results will be useful to identify the need of future research, which will eventually lead to the adoption of best industrial work practices according to the workers capabilities.
Resumo:
The wide use of antibiotics in aquaculture has led to the emergence of resistant microbial species. It should be avoided/minimized by controlling the amount of drug employed in fish farming. For this purpose, the present work proposes test-strip papers aiming at the detection/semi-quantitative determination of organic drugs by visual comparison of color changes, in a similar analytical procedure to that of pH monitoring by universal pH paper. This is done by establishing suitable chemical changes upon cellulose, attributing the paper the ability to react with the organic drug and to produce a color change. Quantitative data is also enabled by taking a picture and applying a suitable mathematical treatment to the color coordinates given by the HSL system used by windows. As proof of concept, this approach was applied to oxytetracycline (OXY), one of the antibiotics frequently used in aquaculture. A bottom-up modification of paper was established, starting by the reaction of the glucose moieties on the paper with 3-triethoxysilylpropylamine (APTES). The so-formed amine layer allowed binding to a metal ion by coordination chemistry, while the metal ion reacted after with the drug to produce a colored compound. The most suitable metals to carry out such modification were selected by bulk studies, and the several stages of the paper modification were optimized to produce an intense color change against the concentration of the drug. The paper strips were applied to the analysis of spiked environmental water, allowing a quantitative determination for OXY concentrations as low as 30 ng/mL. In general, this work provided a simple, method to screen and discriminate tetracycline drugs, in aquaculture, being a promising tool for local, quick and cheap monitoring of drugs.
Resumo:
Nowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
A new biomimetic sensor for leucomalachite green host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted in methacrylic acid or acrylamido-2-methyl-1-propanesulfonic acid-based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and trapped in poly(vinyl chloride). The potentiometric sensors exhibited a near-Nernstian response in steady state evaluations, with slopes and detection limits ranging from 45.8 to 81.2 mV and 0.28 to 1.01 , respectively. They were independent from the pH of test solutions within 3 to 5. Good selectivity was observed towards drugs that may contaminate water near fish cultures, such as oxycycline, doxycycline, enrofloxacin, trimethoprim, creatinine, chloramphenicol, and dopamine. The sensors were successfully applied to field monitoring of leucomalachite green in river samples. The method offered the advantages of simplicity, accuracy, applicability to colored and turbid samples, and automation feasibility.
Resumo:
Graduate Student Symposium on Molecular Imprinting 2013, na Queen’s University, Belfast, United Kingdom, 15 a 17 de Agosto de 2013
Resumo:
This paper presents a framework for a robotic production line simulation learning environment using Autonomous Ground Vehicles (AGV). An eLearning platform is used as interface with the simulator. The objective is to introduce students to the production robotics area using a familiar tool, an eLearning platform, and a framework that simulates a production line using AGVs. This framework allows students to learn about robotics but also about several areas of industrial management engineering without requiring an extensive prior knowledge on the robotics area. The robotic production line simulation learning environment simulates a production environment using AGVs to transport materials to and from the production line. The simulator allows students to validate the AGV dynamics and provides information about the whole materials supplying system which includes: supply times, route optimization and inventory management. The students are required to address several topics such as: sensors, actuators, controllers and an high level management and optimization software. This simulator was developed with a known open source tool from robotics community: Player/Stage. This tool was extended with several add-ons so that students can be able to interact with a complex simulation environment. These add-ons include an abstraction communication layer that performs events provided by the database server which is programmed by the students. An eLearning platform is used as interface between the students and the simulator. The students can visualize the effects of their instructions/programming in the simulator that they can access via the eLearning platform. The proposed framework aims to allow students from different backgrounds to fully experience robotics in practice by suppressing the huge gap between theory and practice that exists in robotics. Using an eLearning platform eliminates installation problems that can occur from different computers software distribution and makes the simulator accessible by all students at school and at home.
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.
Resumo:
With the objective to study the variation of optical properties of rat muscle during optical clearing, we have performed a set of optical measurements from that kind of tissue. The measurements performed were total transmittance, collimated transmittance, specular reflectance and total reflectance. This set of measurements is sufficient to determine diffuse reflectance and absorbance of the sample, also necessary to estimate the optical properties. All the performed measurements and calculated quantities will be used later in inverse Monte Carlo (IMC) simulations to determine the evolution of the optical properties of muscle during treatments with ethylene glycol and glucose. The results obtained with the measurements already provide some information about the optical clearing treatments applied to the muscle and translate the mechanisms of turning the tissue more transparent and sequence of regimes of optical clearing.