52 resultados para agglomerative clustering


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Octopus vulgaris, Octopus maya, and Eledone cirrhosa from distinct marine environments [Northeast Atlantic (NEA), Northwest Atlantic (NWA), Eastern Central Atlantic, Western Central Atlantic (WCA), Pacific Ocean, and Mediterranean Sea] were characterized regarding their lipid and vitamin E composition. These species are those commercially more relevant worldwide. Significant interspecies and interorigin differences were observed. Unsaturated fatty acids account for more than 65% of total fatty acids, mostly ω-3 PUFA due to docosahexaenoic (18.4−29.3%) and eicosapentanoic acid (11.4− 23.9%) contributions. The highest ω-3 PUFA amounts and ω-3/ω-6 ratios were quantified in the heaviest specimens, O. vulgaris from NWA, with high market price, and simultaneously in the lowest graded samples, E. cirrhosa from NEA, of reduced dimensions. Although having the highest cholesterol contents, E. cirrhosa from NEA and O. maya from WCA have also higher protective fatty acid indexes. Chemometric discrimination allowed clustering the selected species and several origins based on lipid and vitamin E profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Arquiteturas, Sistemas e Redes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The positioning of the consumers in the power systems operation has been changed in the recent years, namely due to the implementation of competitive electricity markets. Demand response is an opportunity for the consumers’ participation in electricity markets. Smart grids can give an important support for the integration of demand response. The methodology proposed in the present paper aims to create an improved demand response program definition and remuneration scheme for aggregated resources. The consumers are aggregated in a certain number of clusters, each one corresponding to a distinct demand response program, according to the economic impact of the resulting remuneration tariff. The knowledge about the consumers is obtained from its demand price elasticity values. The illustrative case study included in the paper is based on a 218 consumers’ scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implementation of competitive electricity markets has changed the consumers’ and distributed generation position power systems operation. The use of distributed generation and the participation in demand response programs, namely in smart grids, bring several advantages for consumers, aggregators, and system operators. The present paper proposes a remuneration structure for aggregated distributed generation and demand response resources. A virtual power player aggregates all the resources. The resources are aggregated in a certain number of clusters, each one corresponding to a distinct tariff group, according to the economic impact of the resulting remuneration tariff. The determined tariffs are intended to be used for several months. The aggregator can define the periodicity of the tariffs definition. The case study in this paper includes 218 consumers, and 66 distributed generation units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, and we generate the corresponding MDS maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for maximum superposition and to build a global MDS map of “shapes”. This final plot captures the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized correlation, the Minkowski distance and four entropy-based indices are tested. The proposed approach is applied to the Dow Jones Industrial Average stock market index and the Europe Brent Spot Price FOB time-series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies forest fires from the perspective of dynamical systems. Burnt area, precipitation and atmospheric temperatures are interpreted as state variables of a complex system and the correlations between them are investigated by means of different mathematical tools. First, we use mutual information to reveal potential relationships in the data. Second, we adopt the state space portrait to characterize the system’s behavior. Third, we compare the annual state space curves and we apply clustering and visualization tools to unveil long-range patterns. We use forest fire data for Portugal, covering the years 1980–2003. The territory is divided into two regions (North and South), characterized by different climates and vegetation. The adopted methodology represents a new viewpoint in the context of forest fires, shedding light on a complex phenomenon that needs to be better understood in order to mitigate its devastating consequences, at both economical and environmental levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Every year forest fires consume large areas, being a major concern in many countries like Australia, United States and Mediterranean Basin European Countries (e.g., Portugal, Spain, Italy and Greece). Understanding patterns of such events, in terms of size and spatiotemporal distributions, may help to take measures beforehand in view of possible hazards and decide strategies of fire prevention, detection and suppression. Traditional statistical tools have been used to study forest fires. Nevertheless, those tools might not be able to capture the main features of fires complex dynamics and to model fire behaviour [1]. Forest fires size-frequency distributions unveil long range correlations and long memory characteristics, which are typical of fractional order systems [2]. Those complex correlations are characterized by self-similarity and absence of characteristic length-scale, meaning that forest fires exhibit power-law (PL) behaviour. Forest fires have also been proved to exhibit time-clustering phenomena, with timescales of the order of few days [3]. In this paper, we study forest fires in the perspective of dynamical systems and fractional calculus (FC). Public domain forest fires catalogues, containing data of events occurred in Portugal, in the period 1980 up to 2011, are considered. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses. The frequency spectra of such signals are determined using Fourier transforms, and approximated through PL trendlines. The PL parameters are then used to unveil the fractional-order dynamics characteristics of the data. To complement the analysis, correlation indices are used to compare and find possible relationships among the data. It is shown that the used approach can be useful to expose hidden patterns not captured by traditional tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A competitividade no fabrico de componentes para a indústria automóvel é um factor-chave para o sucesso de qualquer empresa que queira permanecer neste sector de actividade. Atendendo a que o custo de mão-de-obra tem tendência a subir, e que a qualidade é muito mais difícil de assegurar quando os processos assentam essencialmente em produção manual, a automatização ganha cada vez maior relevo, permitindo uma maior produtividade e repetibilidade, assegurando simultaneamente níveis de qualidade superiores, o que contribui também para um incremento da produtividade ainda mais acentuado. Em Portugal, muitas empresas que trabalham para o sector automóvel já apostam fortemente na automatização de processos, e até na robotização. Esta é a única via para melhorar a competitividade e conseguir concorrer com países onde a mão-de-obra é bastante mais económica, ou com outros onde a automação está fortemente instalada. Este trabalho centrou-se na optimização de um equipamento destinado ao fabrico semiautomático de estruturas de assentamento dos estofos para automóveis. O equipamento original estava já fortemente automatizado, mas necessitava ainda de algumas operações manuais, as quais se resumiam a pouco mais do que transferência e agrupamento de subconjuntos. O trabalho teve que ter em conta todas as limitações impostas pelos sistemas já existentes, e ser realizável com o custo mais económico possível. Depois de vários estudos e propostas, o projecto foi implementado.