37 resultados para Stochastic Frontier Models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada ao Instituto Superior de Contabilidade e Administração do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo Gestão de Empresas Orientador: Professor Doutor Eduardo Manuel Lopes de Sá e Silva Co-orientador: Mestre Maria de Fátima Mendes Monteiro

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os modelos de maturidade são instrumentos facilitadores da gestão das organizações, incluindo a gestão da sua função sistemas de informação, não sendo exceção as organizações hospitalares. Neste artigo apresenta-se uma investigação inicial que visa o desenvolvimento de um abrangente modelo de maturidade para a gestão dos sistemas de informação hospitalares. O desenvolvimento deste modelo justifica-se porque os modelos de maturidade atuais no domínio da gestão dos sistemas informação hospitalares ainda se encontram numa fase embrionária de desenvolvimento, sobretudo porque são pouco detalhados, não disponibilizam ferramentas para determinação da maturidade e não apresentam as características dos estágios de maturidade estruturadas por diferentes fatores de influência.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.