81 resultados para Robust Learning Algorithm
Resumo:
O uso das tecnologias com base na Web, no processo ensino/aprendizagem, têm obtido excelentes resultados, onde a Internet é a plataforma base de comunicação e interacção entre estudantes e professores. Assiste-se, também, a uma partilha/reutilização constante de conteúdos educativos/Learning Objects, em diferentes formatos e diferentes tipos de plataformas, incrementada pela Web 2.0. Este artigo apresenta um estudo sobre o desenvolvimento, disponibilização e utilização de Learning Objects em instituições de Ensino Superior. Conclui-se que as instituições de Ensino Superior inquiridas não desenvolvem, não reutilizam nem promovem a reutilização de LOs, que utilizam as especificações SCORM e IMS, e apresentam-se observações sobre as vantagens e desvantagens da sua utilização.
Resumo:
The way humans interact with technology is undergoing a tremendous change. It is hard to imagine the lives we live today without the benefits of technology that we take for granted. Applying research in computer science, engineering, and information systems to non-technical descriptions of technology, such as human interaction, has shaped and continues to shape our lives. Human Interaction with Technology for Working, Communicating, and Learning: Advancements provides a framework for conceptual, theoretical, and applied research in regards to the relationship between technology and humans. This book is unique in the sense that it does not only cover technology, but also science, research, and the relationship between these fields and individuals' experience. This book is a must have for anyone interested in this research area, as it provides a voice for all users and a look into our future.
Resumo:
The dominant discourse in education and training policies, at the turn of the millennium, was on lifelong learning (LLL) in the context of a knowledge-based society. As Green points (2002, pp. 611-612) several factors contribute to this global trend: The demographic change: In most advanced countries, the average age of the population is increasing, as people live longer; The effects of globalisation: Including both economic restructuring and cultural change which have impacts on the world of education; Global economic restructuring: Which causes, for example, a more intense demand for a higher order of skills; the intensified economic competition, forcing a wave of restructuring and creating enormous pressure to train and retrain the workforce In parallel, the “significance of the international division of labour cannot be underestimated for higher education”, as pointed out by Jarvis (1999, p. 250). This author goes on to argue that globalisation has exacerbated differentiation in the labour market, with the First World converting faster to a knowledge economy and a service society, while a great deal of the actual manufacturing is done elsewhere.
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
This paper presents a Multi-Agent Market simulator designed for developing new agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. This tool studies negotiations based on different market mechanisms and, time and behavior dependent strategies. The results of the negotiations between agents are analyzed by data mining algorithms in order to extract rules that give agents feedback to improve their strategies. The system also includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agent reactions.
Resumo:
Long-term contractual decisions are the basis of an efficient risk management. However those types of decisions have to be supported with a robust price forecast methodology. This paper reports a different approach for long-term price forecast which tries to give answers to that need. Making use of regression models, the proposed methodology has as main objective to find the maximum and a minimum Market Clearing Price (MCP) for a specific programming period, and with a desired confidence level α. Due to the problem complexity, the meta-heuristic Particle Swarm Optimization (PSO) was used to find the best regression parameters and the results compared with the obtained by using a Genetic Algorithm (GA). To validate these models, results from realistic data are presented and discussed in detail.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.
Resumo:
The very particular characteristics of electricity markets, require deep studies of the interactions between the involved players. MASCEM is a market simulator developed to allow studying electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is implemented as a multiagent system, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. This paper also presents a methodology to define players’ models based on the historic of their past actions, interpreting how their choices are affected by past experience, and competition.
Resumo:
A ESTSP-IPP implementou em 2008-2009 um novo modelo pedagógico, o PBL, em três licenciaturas. Este modelo tem sido considerado capaz de promover a aquisição de conhecimentos mas também o desenvolvimento de competências transversais valorizadas no mercado de trabalho; orienta-se em torno de problemas significativos da realidade profissional, trabalhados segundo a metodologia dos sete passos, destacando-se a aprendizagem através de pesquisa individual e trabalho de grupo; e visa ainda desenvolver processos cognitivos e metacognitivos como levantar hipóteses, comparar, analisar, interpretar e avaliar. Neste artigo, caracterizamos brevemente o modelo e respectivas implicações, justificando o interesse em investigar as repercussões da sua implementação.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Electrical activity is extremely broad and distinct, requiring by one hand, a deep knowledge on rules, regulations, materials, equipments, technical solutions and technologies and assistance in several areas, as electrical equipment, telecommunications, security and efficiency and rational use of energy, on the other hand, also requires other skills, depending on the specific projects to be implemented, being this knowledge a characteristic that belongs to the professionals with relevant experience, in terms of complexity and specific projects that were made.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
The Information and Communication Technology (ICT) provide new strategies for disseminating information and new communication models in order to change attitudes and human behaviour concerning to education. Nowadays the internet is crucial as a means of communication and information sharing. To education or tutorship will be required to use ICT, supported on the internet, to establish the communication of teacher-student and student-student, disseminating the content of the subjects, and as a way of teaching and learning process. This paper presents an intelligent tutor that aims to be a tool to support teaching and learning in the field of the electrical engineering project.