49 resultados para RHODIUM CLUSTERS
Resumo:
When a pesticide is released into the environment, most of it is lost before it reaches its target. An effective way to reduce environmental losses of pesticides is by using controlled release technology. Microencapsulation becomes a promising technique for the production of controlled release agricultural formulations. In this work, the microencapsulation of chlorophenoxy herbicide MCPA with native b-cyclodextrin and its methyl and hydroxypropyl derivatives was investigated. The phase solubility study showed that both native and b-CD derivatives increased the water solubility of the herbicide and inclusion complexes are formed in a stoichiometric ratio of 1:1. The stability constants describing the extent of formation of the complexes have been determined by phase solubility studies. 1H NMR experiments were also accomplished for the prepared solid systems and the data gathered confirm the formation of the inclusion complexes. 1H NMR data obtained for the MCPA/CDs complexes disclosed noticeable proton shift displacements for OCH2 group and H6 aromatic proton of MCPA provided clear evidence of inclusion complexation process, suggesting that the phenyl moiety of the herbicide was included in the hydrophobic cavity of CDs. Free energy molecular mechanics calculations confirm all these findings. The gathered results can be regarded as an essential step to the development of controlled release agricultural formulations containing herbicide MCPA.
Resumo:
Extended-spectrum β-lactamases (ESBLs) prevalence was studied in the north of Portugal, among 193 clinical isolates belonging to citizens in a district in the boundaries between this country and Spain from a total of 7529 clinical strains. In the present study we recovered some members of Enterobacteriaceae family, producing ESBL enzymes, including Escherichia coli (67.9%), Klebsiella pneumoniae (30.6%), Klebsiella oxytoca (0.5%), Enterobacter aerogenes (0.5%), and Citrobacter freundii (0.5%). β-lactamases genes blaTEM, blaSHV, and blaCTX-M were screened by polymerase chain reaction (PCR) and sequencing approaches. TEM enzymes were among the most prevalent types (40.9%) followed by CTX-M (37.3%) and SHV (23.3%). Among our sample of 193 ESBL-producing strains 99.0% were resistant to the fourth-generation cephalosporin cefepime. Of the 193 isolates 81.3% presented transferable plasmids harboring genes. Clonal studies were performed by PCR for the enterobacterial repetitive intragenic consensus (ERIC) sequences. This study reports a high diversity of genetic patterns. Ten clusters were found for E. coli isolates and five clusters for K. pneumoniae strains by means of ERIC analysis. In conclusion, in this country, the most prevalent type is still the TEM-type, but CTX-M is growing rapidly.
Resumo:
A chromatographic separation of active ingredients of Combivir, Epivir, Kaletra, Norvir, Prezista, Retrovir, Trivizir, Valcyte, and Viramune is performed on thin layer chromatography. The spectra of these nine drugs were recorded using the Fourier transform infrared spectroscopy. This information is then analyzed by means of the cosine correlation. The comparison of the infrared spectra in the perspective of the adopted similarity measure is possible to visualize with present day computer tools, and the emerging clusters provide additional information about the similarities of the investigated set of complex drugs.
Resumo:
Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
The increasing importance of the integration of distributed generation and demand response in the power systems operation and planning, namely at lower voltage levels of distribution networks and in the competitive environment of electricity markets, leads us to the concept of smart grids. In both traditional and smart grid operation, non-technical losses are a great economic concern, which can be addressed. In this context, the ELECON project addresses the use of demand response contributions to the identification of non-technical losses. The present paper proposes a methodology to be used by Virtual Power Players (VPPs), which are entities able to aggregate distributed small-size resources, aiming to define the best electricity tariffs for several, clusters of consumers. A case study based on real consumption data demonstrates the application of the proposed methodology.
Resumo:
This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
Resumo:
The positioning of the consumers in the power systems operation has been changed in the recent years, namely due to the implementation of competitive electricity markets. Demand response is an opportunity for the consumers’ participation in electricity markets. Smart grids can give an important support for the integration of demand response. The methodology proposed in the present paper aims to create an improved demand response program definition and remuneration scheme for aggregated resources. The consumers are aggregated in a certain number of clusters, each one corresponding to a distinct demand response program, according to the economic impact of the resulting remuneration tariff. The knowledge about the consumers is obtained from its demand price elasticity values. The illustrative case study included in the paper is based on a 218 consumers’ scenario.
Resumo:
The implementation of competitive electricity markets has changed the consumers’ and distributed generation position power systems operation. The use of distributed generation and the participation in demand response programs, namely in smart grids, bring several advantages for consumers, aggregators, and system operators. The present paper proposes a remuneration structure for aggregated distributed generation and demand response resources. A virtual power player aggregates all the resources. The resources are aggregated in a certain number of clusters, each one corresponding to a distinct tariff group, according to the economic impact of the resulting remuneration tariff. The determined tariffs are intended to be used for several months. The aggregator can define the periodicity of the tariffs definition. The case study in this paper includes 218 consumers, and 66 distributed generation units.
Resumo:
Cyanobacteria are important primary producers, and many are able to fix atmospheric nitrogen playing a key role in the marine environment. However, not much is known about the diversity of cyanobacteria in Portuguese marine waters. This paper describes the diversity of 60 strains isolated from benthic habitats in 9 sites (intertidal zones) on the Portuguese South and West coasts. The strains were characterized by a morphological study (light and electron microscopy) and by a molecular characterization (partial 16S rRNA, nifH, nifK, mcyA, mcyE/ndaF, sxtI genes). The morphological analyses revealed 35 morphotypes (15 genera and 16 species) belonging to 4 cyanobacterial Orders/Subsections. The dominant groups among the isolates were the Oscillatoriales. There is a broad congruence between morphological and molecular assignments. The 16S rRNA gene sequences of 9 strains have less than 97% similarity compared to the sequences in the databases, revealing novel cyanobacterial diversity. Phylogenetic analysis, based on partial 16S rRNA gene sequences showed at least 12 clusters. One-third of the isolates are potential N2-fixers, as they exhibit heterocysts or the presence of nif genes was demonstrated by PCR. Additionally, no conventional freshwater toxins genes were detected by PCR screening.
Resumo:
Multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the benefits gained from multiple interfaces come at an expense—that being higher energy consumption in an era where mobile devices need to be energy compliant. One promising solution is the usage of short-range cooperative communication as an overlay for infrastructure-based networks taking advantage of its context information. However, the node discovery mechanism, which is pivotal to the bearer establishment process, still represents a major burden in terms of the total energy budget. In this paper, we propose a technology agnostic approach towards enhancing the MAC energy ratings by presenting a context-aware node discovery (CANDi) algorithm, which provides a priori knowledge towards the node discovery mechanism by allowing it to search nodes in the near vicinity at the ‘right time and at the right place’. We describe the different beacons required for establishing the cooperation, as well as the context information required, including battery level, modes, location and so on. CANDi uses the long-range network (WiMAX and WiFi) to distribute the context information about cooperative clusters (Ultra-wideband-based) in the vicinity. The searching nodes can use this context in locating the cooperative clusters/nodes, which facilitates the establishing of short-range connections. Analytical and simulation results are obtained, and the energy saving gains are further demonstrated in the laboratory using a customised testbed. CANDi saves up to 50% energy during the node discovery process, while the demonstrative testbed shows up to 75% savings in the total energy budget, thus validating the algorithm, as well as providing viable evidence to support the usage of short-range cooperative communications for energy savings.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
This paper examines modern economic growth according to the multidimensional scaling (MDS) method and state space portrait (SSP) analysis. Electing GDP per capita as the main indicator for economic growth and prosperity, the long-run perspective from 1870 to 2010 identifies the main similarities among 34 world partners’ modern economic growth and exemplifies the historical waving mechanics of the largest world economy, the USA. MDS reveals two main clusters among the European countries and their old offshore territories, and SSP identifies the Great Depression as a mild challenge to the American global performance, when compared to the Second World War and the 2008 crisis.
Resumo:
This paper applies multidimensional scaling techniques and Fourier transform for visualizing possible time-varying correlations between 25 stock market values. The method is useful for observing clusters of stock markets with similar behavior.