67 resultados para Particle swarm optimization algorithm PSO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apresenta-se nesta tese uma revisão da literatura sobre a modelação de semicondutores de potência baseada na física e posterior análise de desempenho de dois métodos estocásticos, Particle Swarm Optimizaton (PSO) e Simulated Annealing (SA), quando utilizado para identificação eficiente de parâmetros de modelos de dispositivos semicondutores de potência, baseado na física. O conhecimento dos valores destes parâmetros, para cada dispositivo, é fundamental para uma simulação precisa do comportamento dinâmico do semicondutor. Os parâmetros são extraídos passo-a-passo durante simulação transiente e desempenham um papel relevante. Uma outra abordagem interessante nesta tese relaciona-se com o facto de que nos últimos anos, os métodos de modelação para dispositivos de potência têm emergido, com alta precisão e baixo tempo de execução baseado na Equação de Difusão Ambipolar (EDA) para díodos de potência e implementação no MATLAB numa estratégia de optimização formal. A equação da EDA é resolvida numericamente sob várias condições de injeções e o modelo é desenvolvido e implementado como um subcircuito no simulador IsSpice. Larguras de camada de depleção, área total do dispositivo, nível de dopagem, entre outras, são alguns dos parâmetros extraídos do modelo. Extração de parâmetros é uma parte importante de desenvolvimento de modelo. O objectivo de extração de parâmetros e otimização é determinar tais valores de parâmetros de modelo de dispositivo que minimiza as diferenças entre um conjunto de características medidas e resultados obtidos pela simulação de modelo de dispositivo. Este processo de minimização é frequentemente chamado de ajuste de características de modelos para dados de medição. O algoritmo implementado, PSO é uma técnica de heurística de otimização promissora, eficiente e recentemente proposta por Kennedy e Eberhart, baseado no comportamento social. As técnicas propostas são encontradas para serem robustas e capazes de alcançar uma solução que é caracterizada para ser precisa e global. Comparada com algoritmo SA já realizada, o desempenho da técnica proposta tem sido testado utilizando dados experimentais para extrair parâmetros de dispositivos reais das características I-V medidas. Para validar o modelo, comparação entre resultados de modelo desenvolvido com um outro modelo já desenvolvido são apresentados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent changes concerning the consumersâ active participation in the efficient management of load devices for oneâs own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of energy resource scheduling. An aggregator will manage all distributed resources connected to its distribution network, including distributed generation based on renewable energy resources, demand response, storage systems, and electrical gridable vehicles. The use of gridable vehicles will have a significant impact on power systems management, especially in distribution networks. Therefore, the inclusion of vehicles in the optimal scheduling problem will be very important in future network management. The proposed particle swarm optimization approach is compared with a reference methodology based on mixed integer non-linear programming, implemented in GAMS, to evaluate the effectiveness of the proposed methodology. The paper includes a case study that consider a 32 bus distribution network with 66 distributed generators, 32 loads and 50 electric vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology to address reactive power compensation using Evolutionary Particle Swarm Optimization (EPSO) technique programmed in the MATLAB environment. The main objective is to find the best operation point minimizing power losses with reactive power compensation, subjected to all operational constraints, namely full AC power flow equations, active and reactive power generation constraints. The methodology has been tested with the IEEE 14 bus test system demonstrating the ability and effectiveness of the proposed approach to handle the reactive power compensation problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Techâs. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aggregation and management of Distributed Energy Resources (DERs) by an Virtual Power Players (VPP) is an important task in a smart grid context. The Energy Resource Management (ERM) of theses DERs can become a hard and complex optimization problem. The large integration of several DERs, including Electric Vehicles (EVs), may lead to a scenario in which the VPP needs several hours to have a solution for the ERM problem. This is the reason why it is necessary to use metaheuristic methodologies to come up with a good solution with a reasonable amount of time. The presented paper proposes a Simulated Annealing (SA) approach to determine the ERM considering an intensive use of DERs, mainly EVs. In this paper, the possibility to apply Demand Response (DR) programs to the EVs is considered. Moreover, a trip reduce DR program is implemented. The SA methodology is tested on a 32-bus distribution network with 2000 EVs, and the SA results are compared with a deterministic technique and particle swarm optimization results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Computação Evolutiva enquadra-se na área da Inteligência Artificial e é um ramo das ciências da computação que tem vindo a ser aplicado na resolução de problemas em diversas áreas da Engenharia. Este trabalho apresenta o estado da arte da Computação Evolutiva, assim como algumas das suas aplicações no ramo da eletrónica, denominada Eletrónica Evolutiva (ou Hardware Evolutivo), enfatizando a síntese de circuitos digitais combinatórios. Em primeiro lugar apresenta-se a Inteligência Artificial, passando à Computação Evolutiva, nas suas principais vertentes: os Algoritmos Evolutivos baseados no processo da evolução das espécies de Charles Darwin e a Inteligência dos Enxames baseada no comportamento coletivo de alguns animais. No que diz respeito aos Algoritmos Evolutivos, descrevem-se as estratégias evolutivas, a programação genética, a programação evolutiva e com maior ênfase, os Algoritmos Genéticos. Em relação à Inteligência dos Enxames, descreve-se a otimização por colônia de formigas e a otimização por enxame de partículas. Em simultâneo realizou-se também um estudo da Eletrónica Evolutiva, explicando sucintamente algumas das áreas de aplicação, entre elas: a robótica, as FPGA, o roteamento de placas de circuito impresso, a síntese de circuitos digitais e analógicos, as telecomunicações e os controladores. A título de concretizar o estudo efetuado, apresenta-se um caso de estudo da aplicação dos algoritmos genéticos na síntese de circuitos digitais combinatórios, com base na análise e comparação de três referências de autores distintos. Com este estudo foi possível comparar, não só os resultados obtidos por cada um dos autores, mas também a forma como os algoritmos genéticos foram implementados, nomeadamente no que diz respeito aos parâmetros, operadores genéticos utilizados, função de avaliação, implementação em hardware e tipo de codificação do circuito.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The large penetration of intermittent resources, such as solar and wind generation, involves the use of storage systems in order to improve power system operation. Electric Vehicles (EVs) with gridable capability (V2G) can operate as a means for storing energy. This paper proposes an algorithm to be included in a SCADA (Supervisory Control and Data Acquisition) system, which performs an intelligent management of three types of consumers: domestic, commercial and industrial, that includes the joint management of loads and the charge/discharge of EVs batteries. The proposed methodology has been implemented in a SCADA system developed by the authors of this paper â the SCADA House Intelligent Management (SHIM). Any event in the system, such as a Demand Response (DR) event, triggers the use of an optimization algorithm that performs the optimal energy resources scheduling (including loads and EVs), taking into account the priorities of each load defined by the installation users. A case study considering a specific consumer with several loads and EVs is presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.