125 resultados para Networks on chip (NoC)
Resumo:
Proceedings of the 12th European Conference on Wireless Sensor Networks (EWSN'15), 9-11 Feb 2015, Porto-Portugal.
Resumo:
Health promotion in hospital environments can be improved using the most recent information and communication technologies. The Internet connectivity to small sensor nodes carried by patients allows remote access to their bio-signals. To promote these features the healthcare wireless sensor networks (HWSN) are used. In these networks mobility support is a key issue in order to keep patients under realtime monitoring even when they move around. To keep sensors connected to the network, they should change their access points of attachment when patients move to a new coverage area along an infirmary. This process, called handover, is responsible for continuous network connectivity to the sensors. This paper presents a detailed performance evaluation study considering three handover mechanisms for healthcare scenarios (Hand4MAC, RSSI-based, and Backbone-based). The study was performed by simulation using several scenarios with different number of sensors and different moving velocities of sensor nodes. The results show that Hand4MAC is the best solution to guarantee almost continuous connectivity to sensor nodes with less energy consumption.
Resumo:
In this paper we describe a casestudy of an experiment on how reflexivity and technology can enhance learning, by using ePorfolios as a training environment to develop translation skills. Translation is today a multiskilled job and translators need to assure their clients a good performance and quality, both in language and in technology domains. In order to accomplish it, for the translator all the tasks and processes he develops appear as crucial, being pretranslation and posttranslation processes equally important as the translation itself, namely as far as autonomy, reflexive and critical skills are concerned. Finally, the need and relevance for collaborative tasks and networks amongst virtual translation communities, led us to the decision of implementing ePortfolios as a tool to develop the requested skills and extend the use of Internet in translation, namely in terminology management phases, for the completion of each task, by helping students in the management of the projects deadlines, improving their knowledge on the construction and management of translation resources and deepening their awareness about the concepts related to the development and usability of ePorfolios.
Resumo:
This paper presents a methodology that aims to increase the probability of delivering power to any load point of the electrical distribution system by identifying new investments in distribution components. The methodology is based on statistical failure and repair data of the distribution power system components and it uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A mixed integer non-linear optimization technique is developed to identify adequate investments in distribution networks components that allow increasing the availability level for any customer in the distribution system at minimum cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a real distribution network.
Resumo:
This paper addresses the problem of energy resource scheduling. An aggregator will manage all distributed resources connected to its distribution network, including distributed generation based on renewable energy resources, demand response, storage systems, and electrical gridable vehicles. The use of gridable vehicles will have a significant impact on power systems management, especially in distribution networks. Therefore, the inclusion of vehicles in the optimal scheduling problem will be very important in future network management. The proposed particle swarm optimization approach is compared with a reference methodology based on mixed integer non-linear programming, implemented in GAMS, to evaluate the effectiveness of the proposed methodology. The paper includes a case study that consider a 32 bus distribution network with 66 distributed generators, 32 loads and 50 electric vehicles.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
Collaborative Work plays an important role in today’s organizations, especially in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself complex, but is becoming recurrent in recent years. In this work we present the VirtualECare project, an intelligent multi-agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In last year’s there has been a substantially increase on the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is becoming not exclusive of the elderly, as diseases like obesity, diabetes and blood pressure have been increasing among young adults. This is a new reality that needs to be dealt by the health sector, particularly by the public one. Given this scenarios, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when we believe they should not to be removed from their natural “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have also assisted to a growing interest in combining the advances in information society - computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests in the development of a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in Wireless Sensor Networks differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols and mechanisms. In this Technical Report, we present a survey on communication protocols for WSNs with a particular emphasis on the lower protocol layers. We give a particular focus to the MAC (Medium Access Control) sub-layer, since it has a prominent influence on some relevant requirements that must be satisfied by WSN protocols, such as energy consumption, time performance and scalability. We overview some relevant MAC protocol solutions and discuss how they tackle the trade-off between the referred requirements.
Resumo:
In this paper we describe a real-time industrial communication network able to support both controlrelated and multimedia traffic. The industrial communication network is based on the PROFIBUS standard, with multimedia capabilities being provided by an adequate integration of TCP/IP protocols into the PROFIBUS stack. From the operational point of view the integration of TCP/IP into PROFIBUS is by itself a challenge, since the master-slave nature of the PROFIBUS MAC makes complex the implementation of the symmetry inherent to IP communications. From the timeliness point of view the challenge is two folded. On one hand the multimedia traffic should not interfere with the timing requirements of the "native" control-related PROFIBUS traffic (typically hard real-time). On the other hand multimedia traffic requires certain levels of quality-of-service to be attained. In this paper we provide a methodology that enables fulfilling the timing requirements for both types of traffic in these real-time industrial LAN. Moreover, we describe suitable algorithms for the scheduling support of concurrent multimedia streams.
Resumo:
In this paper we describe how to integrate Internet Protocols (IP) into a typical hierarchical master-slave fieldbus network, supporting a logical ring token passing mechanism between master stations. The integration of the TCP/IP protocols in the fieldbus protocol rises a number of issues that must be addressed properly. In this paper we particularly address the issues related to the conveyance of IP fragments in fieldbus frames (fragmentation/de-fragmentation) and on how to support the symmetry inherent to the TCP/IP protocols in fieldbus slaves, which lack communication initiative.
Resumo:
Fieldbus networks aim at the interconnection of field devices such as sensors, actuators and small controllers. Therefore, they are an effective technology upon which Distributed Computer Controlled Systems (DCCS) can be built. DCCS impose strict timeliness requirements to the communication network. In essence, by timeliness requirements we mean that traffic must be sent and received within a bounded interval, otherwise a timing fault is said to occur. P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In P-NET each master is allowed to transmit only one message per token visit, which means that in the worst-case the communication response time could be derived considering that the token is fully utilised by all stations. However, such analysis can be proved to be quite pessimistic. In this paper we propose a more sophisticated P-NET timing analysis model, which considers the actual token utilisation by different masters. The major contribution of this model is to provide a less pessimistic, and thus more accurate, analysis for the evaluation of the worst-case communication response time in P-NET fieldbus networks.
Resumo:
The marriage of emerging information technologies with control technologies is a major driving force that, in the context of the factory-floor, is creating an enormous eagerness for extending the capabilities of currently available fieldbus networks to cover functionalities not considered up to a recent past. Providing wireless capabilities to such type of communication networks is a big share of that effort. The RFieldbus European project is just one example, where PROFIBUS was provided with suitable extensions for implementing hybrid wired/wireless communication systems. In RFieldbus, interoperability between wired and wireless components is achieved by the use specific intermediate networking systems operating as repeaters, thus creating a single logical ring (SLR) network. The main advantage of the SLR approach is that the effort for protocol extensions is not significant. However, a multiple logical ring (MLR) approach provides traffic and error isolation between different network segments. This concept was introduced in, where an approach for a bridge-based architecture was briefly outlined. This paper will focus on the details of the inter-Domain Protocol (IDP), which is responsible for handling transactions between different network domains (wired or wireless) running the PROFIBUS protocol.
Resumo:
Future industrial control/multimedia applications will increasingly impose or benefit from wireless and mobile communications. Therefore, there is an enormous eagerness for extending currently available industrial communications networks with wireless and mobility capabilities. The RFieldbus European project is just one example, where a PROFIBUS-based hybrid (wired/wireless) architecture was specified and implemented. In the RFieldbus architecture, interoperability between wired and wireless components is achieved by the use specific intermediate networking systems operating at the physical layer level, i.e. operating as repeaters. Instead, in this paper we will focus on a bridge-based approach, which presents several advantages. This concept was introduced in (Ferreira, et al., 2002), where a bridge-based approach was briefly outlined. Then, a specific Inter-Domain Protocol (IDP) was proposed to handle the Inter-Domain transactions in such a bridge-based approach (Ferreira, et al., 2003a). The major contribution of this paper is in extending these previous works by describing the protocol extensions to support inter-cell mobility in such a bridge-based hybrid wired/wireless PROFIBUS networks.
Resumo:
Controller area network (CAN) is a fieldbus network suitable for small-scale distributed computer controlled systems (DCCS), being appropriate for sending and receiving short real-time messages at speeds up to 1 Mbit/sec. Several studies are available on how to guarantee the real-time requirements of CAN messages, providing preruntime schedulability conditions to guarantee the real-time communication requirements of DCCS traffic. Usually, it is considered that CAN guarantees atomic multicast properties by means of its extensive error detection/signaling mechanisms. However, there are some error situations where messages can be delivered in duplicate or delivered only by a subset of the receivers, leading to inconsistencies in the supported applications. In order to prevent such inconsistencies, a middleware for reliable communication in CAN is proposed, taking advantage of CAN synchronous properties to minimize the runtime overhead. Such middleware comprises a set of atomic multicast and consolidation protocols, upon which the reliable communication properties are guaranteed. The related timing analysis demonstrates that, in spite of the extra stack of protocols, the real-time properties of CAN are preserved since the predictability of message transfer is guaranteed.