142 resultados para Net-savvy generation
Resumo:
Smart Grids (SGs) have emerged as the new paradigm for power system operation and management, being designed to include large amounts of distributed energy resources. This new paradigm requires new Energy Resource Management (ERM) methodologies considering different operation strategies and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis of the classifications that were attributed by each VPP to the distributed generation units, as well as in the analysis of the previous established contracts by each player. The proposed classification model is based in fourteen parameters including technical, economical and behavioural ones. Depending of the VPP strategies, size and goals, each parameter has different importance. VPP can also manage other type of energy resources, like storage units, electric vehicles, demand response programs or even parts of the MV and LV distribution network. A case study with twelve VPPs with different characteristics and one hundred and fifty real distributed generation units is included in the paper.
Resumo:
Further improvements in demand response programs implementation are needed in order to take full advantage of this resource, namely for the participation in energy and reserve market products, requiring adequate aggregation and remuneration of small size resources. The present paper focuses on SPIDER, a demand response simulation that has been improved in order to simulate demand response, including realistic power system simulation. For illustration of the simulator’s capabilities, the present paper is proposes a methodology focusing on the aggregation of consumers and generators, providing adequate tolls for the demand response program’s adoption by evolved players. The methodology proposed in the present paper focuses on a Virtual Power Player that manages and aggregates the available demand response and distributed generation resources in order to satisfy the required electrical energy demand and reserve. The aggregation of resources is addressed by the use of clustering algorithms, and operation costs for the VPP are minimized. The presented case study is based on a set of 32 consumers and 66 distributed generation units, running on 180 distinct operation scenarios.
Resumo:
Com o aumento de plataformas móveis disponíveis no mercado e com o constante incremento na sua capacidade computacional, a possibilidade de executar aplicações e em especial jogos com elevados requisitos de desempenho aumentou consideravelmente. O mercado dos videojogos tem assim um cada vez maior número de potenciais clientes. Em especial, o mercado de jogos massive multiplayer online (MMO) tem-se tornado muito atractivo para as empresas de desenvolvimento de jogos. Estes jogos suportam uma elevada quantidade de jogadores em simultâneo que podem estar a executar o jogo em diferentes plataformas e distribuídos por um "mundo" de jogo extenso. Para incentivar a exploração desse "mundo", distribuem-se de forma inteligente pontos de interesse que podem ser explorados pelo jogador. Esta abordagem leva a um esforço substancial no planeamento e construção desses mundos, gastando tempo e recursos durante a fase de desenvolvimento. Isto representa um problema para as empresas de desenvolvimento de jogos, e em alguns casos, e impraticável suportar tais custos para equipas indie. Nesta tese e apresentada uma abordagem para a criação de mundos para jogos MMO. Estudam-se vários jogos MMO que são casos de sucesso de modo a identificar propriedades comuns nos seus mundos. O objectivo e criar uma framework flexível capaz de gerar mundos com estruturas que respeitam conjuntos de regras definidas por game designers. Para que seja possível usar a abordagem aqui apresentada em v arias aplicações diferentes, foram desenvolvidos dois módulos principais. O primeiro, chamado rule-based-map-generator, contem a lógica e operações necessárias para a criação de mundos. O segundo, chamado blocker, e um wrapper à volta do módulo rule-based-map-generator que gere as comunicações entre servidor e clientes. De uma forma resumida, o objectivo geral e disponibilizar uma framework para facilitar a geração de mundos para jogos MMO, o que normalmente e um processo bastante demorado e aumenta significativamente o custo de produção, através de uma abordagem semi-automática combinando os benefícios de procedural content generation (PCG) com conteúdo gráfico gerado manualmente.
Resumo:
AGM and Conference in Mechelen 27 – 30 April 2010
Resumo:
18th SPACE Annual Conference and EURASHE-SEPHE Seminar 21-24 March 2007 Thursday 22 March 2007
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs may turn electricity generation by renewable sources valuable in electricity markets. Information availability and adequate decision-support tools are crucial for achieving VPPs’ goals. This involves information concerning associated producers and market operation. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, focusing mainly in the information requirements for adequate decision making.
Resumo:
All over the world Distributed Generation is seen as a valuable help to get cleaner and more efficient electricity. Under this context distributed generators, owned by different decentralized players can provide a significant amount of the electricity generation. To get negotiation power and advantages of scale economy, these players can be aggregated giving place to a new concept: the Virtual Power Producer. Virtual Power Producers are multi-technology and multi-site heterogeneous entities. Virtual Power Producers should adopt organization and management methodologies so that they can make Distributed Generation a really profitable activity, able to participate in the market. In this paper we address the integration of Virtual Power Producers into an electricity market simulator –MASCEM – as a coalition of distributed producers.
Resumo:
This paper presents MASCEM - Multi-Agent Simulator for Electricity Markets improvement towards an enlarged model for Seller Agents coalitions. The simulator has been improved, both regarding its user interface and internal structure. The OOA, used as development platform, version was updated and the multi-agent model was adjusted for implementing and testing several negotiations regarding Seller agents’ coalitions. Seller coalitions are a very important subject regarding the increased relevance of Distributed Generation under liberalised electricity markets.
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. One of the most important tasks of a VPP is the conjugation of technologies to obtain a consistent set of associated producers and allow them to operate in the electric market. This paper presents some characteristics regarding already existent technologies and relevant aspects for producers and for VPP.
Resumo:
The introduction of wind power generation in several countries around the world, including in European countries, where energy policy directives have encouraged the use of renewables, led to several changes in market and power systems operation. The intensive integration of these sources has led to situations in which the demand is lower than the available renewable resources. In these situations a part of the available generation is wasted if not used for storage or to supply additional demand. This paper proposes a real time demand response methodology based on changing the electricity price for the consumers expecting an increase in the demand in the periods in which that demand is lower than the available renewable generation. The consumers response to the changes in electricity price is characterized by their price elasticity of demand considered distinct for each consumer type. The proposed methodology is applied to the Portuguese power system, in the context of the Iberian electricity market (MIBEL). The renewable-based producers are considered as special producers, with special tariffs, and so it is important to use the energy available as it will be paid anyway. In this context, consumers are entities actively participating in the operation of the market.
Resumo:
The use of distributed energy resources, based on natural intermittent power sources, like wind generation, in power systems imposes the development of new adequate operation management and control methodologies. A short-term Energy Resource Management (ERM) methodology performed in two phases is proposed in this paper. The first one addresses the day-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. The ERM scheduling is a complex optimization problem due to the high quantity of variables and constraints. In this paper the main goal is to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixedinteger non-linear programming approach. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units and 1000 electric vehicles has been implemented in a simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.
Resumo:
Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.