44 resultados para Multidimensional scaling (MDS)
Resumo:
Atmospheric temperatures characterize Earth as a slow dynamics spatiotemporal system, revealing long-memory and complex behavior. Temperature time series of 54 worldwide geographic locations are considered as representative of the Earth weather dynamics. These data are then interpreted as the time evolution of a set of state space variables describing a complex system. The data are analyzed by means of multidimensional scaling (MDS), and the fractional state space portrait (fSSP). A centennial perspective covering the period from 1910 to 2012 allows MDS to identify similarities among different Earth’s locations. The multivariate mutual information is proposed to determine the “optimal” order of the time derivative for the fSSP representation. The fSSP emerges as a valuable alternative for visualizing system dynamics.
Resumo:
This paper analyzes the DNA code of several species in the perspective of information content. For that purpose several concepts and mathematical tools are selected towards establishing a quantitative method without a priori distorting the alphabet represented by the sequence of DNA bases. The synergies of associating Gray code, histogram characterization and multidimensional scaling visualization lead to a collection of plots with a categorical representation of species and chromosomes.
Resumo:
Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2013
Resumo:
The last 40 years of the world economy are analyzed by means of computer visualization methods. Multidimensional scaling and the hierarchical clustering tree techniques are used. The current Western downturn in favor of Asian partners may still be reversed in the coming decades.
Resumo:
Financial time series have a complex dynamic nature. Many techniques were adopted having in mind standard paradigms of time flow. This paper explores an alternative route involving relativistic effects. It is observed that the measuring perspective influences the results and that we can have different time textures.
Resumo:
Fractional dynamics reveals long range memory properties of systems described by means of signals represented by real numbers. Alternatively, dynamical systems and signals can adopt a representation where states are quantified using a set of symbols. Such signals occur both in nature and in man made processes and have the potential of a aftermath as relevant as the classical counterpart. This paper explores the association of Fractional calculus and symbolic dynamics. The results are visualized by means of the multidimensional technique and reveal the association between the fractal dimension and one definition of fractional derivative.
Resumo:
This paper studies forest fires from the perspective of dynamical systems. Burnt area, precipitation and atmospheric temperatures are interpreted as state variables of a complex system and the correlations between them are investigated by means of different mathematical tools. First, we use mutual information to reveal potential relationships in the data. Second, we adopt the state space portrait to characterize the system’s behavior. Third, we compare the annual state space curves and we apply clustering and visualization tools to unveil long-range patterns. We use forest fire data for Portugal, covering the years 1980–2003. The territory is divided into two regions (North and South), characterized by different climates and vegetation. The adopted methodology represents a new viewpoint in the context of forest fires, shedding light on a complex phenomenon that needs to be better understood in order to mitigate its devastating consequences, at both economical and environmental levels.
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.
Resumo:
This paper aims to study the relationships between chromosomal DNA sequences of twenty species. We propose a methodology combining DNA-based word frequency histograms, correlation methods, and an MDS technique to visualize structural information underlying chromosomes (CRs) and species. Four statistical measures are tested (Minkowski, Cosine, Pearson product-moment, and Kendall τ rank correlations) to analyze the information content of 421 nuclear CRs from twenty species. The proposed methodology is built on mathematical tools and allows the analysis and visualization of very large amounts of stream data, like DNA sequences, with almost no assumptions other than the predefined DNA “word length.” This methodology is able to produce comprehensible three-dimensional visualizations of CR clustering and related spatial and structural patterns. The results of the four test correlation scenarios show that the high-level information clusterings produced by the MDS tool are qualitatively similar, with small variations due to each correlation method characteristics, and that the clusterings are a consequence of the input data and not method’s artifacts.
Resumo:
This paper studies the human DNA in the perspective of signal processing. Six wavelets are tested for analyzing the information content of the human DNA. By adopting real Shannon wavelet several fundamental properties of the code are revealed. A quantitative comparison of the chromosomes and visualization through multidimensional and dendograms is developed.
Resumo:
O presente trabalho faz uma reflexão sobre o processo de construção do conceito de desenvolvimento na sociedade capitalista. Para tanto, utiliza-se da análise histórica com ênfase em quatro dimensões: econômica, política, social e ambiental. O estudo demonstra que o conceito surge na biologia, empregado como processo de evolução dos seres vivos para o alcance de suas potencialidades genéticas, porém, incorpora-se nas teorias e práticas sociais, por meio da economia, da sociologia, da antropologia e da ciência política. Ao longo de seu percurso histórico, o termo proporcinou algumas concepções diferentes de sociedade, como sociedade do crescimento, sociedade do bem estar social e sociedade sustentável. Portanto, este ensaio propõe compreender a lógica que fundamenta essas mudanças paradigmáticas do significado de desenvolvimento na sociedade.
Resumo:
A comunicação e a aprendizagem encontram-se intimamente ligadas. Constituem a essência do desenvolvimento e crescimento humanos através das quais legitimamos o nosso processo de vida. É através delas que a pessoa se envolve nas suas atividades diárias e desempenha os papéis que são esperados de si pela sociedade. Para a pessoa com afasia esta realidade encontra-se drasticamente alterada. A afasia pode criar limitações à atividade e restrições à participação do indivíduo resultantes da relação da deficiência com o meio em que a pessoa se move. O impacto dos fatores ambientais na aprendizagem do viver com afasia e consequente renegociação do “eu” precisa de ser foco de reflexão.
Resumo:
Artigo científico disponível actualmente em Early View (Online Version of Record published before inclusion in an issue)
Resumo:
Health promotion in hospital environments can be improved using the most recent information and communication technologies. The Internet connectivity to small sensor nodes carried by patients allows remote access to their bio-signals. To promote these features the healthcare wireless sensor networks (HWSN) are used. In these networks mobility support is a key issue in order to keep patients under realtime monitoring even when they move around. To keep sensors connected to the network, they should change their access points of attachment when patients move to a new coverage area along an infirmary. This process, called handover, is responsible for continuous network connectivity to the sensors. This paper presents a detailed performance evaluation study considering three handover mechanisms for healthcare scenarios (Hand4MAC, RSSI-based, and Backbone-based). The study was performed by simulation using several scenarios with different number of sensors and different moving velocities of sensor nodes. The results show that Hand4MAC is the best solution to guarantee almost continuous connectivity to sensor nodes with less energy consumption.