50 resultados para Management - simulation methods
Resumo:
Serious games are starting to attain a higher role as tools for learning in various contexts, but in particular in areas such as education and training. Due to its characteristics, such as rules, behavior simulation and feedback to the player's actions, serious games provide a favorable learning environment where errors can occur without real life penalty and students get instant feedback from challenges. These challenges are in accordance with the intended objectives and will self-adapt and repeat according to the student’s difficulty level. Through motivating and engaging environments, which serve as base for problem solving and simulation of different situations and contexts, serious games have a great potential to aid players developing professional skills. But, how do we certify the acquired knowledge and skills? With this work we intend to propose a methodology to establish a relationship between the game mechanics of serious games and an array of competences for certification, evaluating the applicability of various aspects in the design and development of games such as the user interfaces and the gameplay, obtaining learning outcomes within the game itself. Through the definition of game mechanics combined with the necessary pedagogical elements, the game will ensure the certification. This paper will present a matrix of generic skills, based on the European Framework of Qualifications, and the definition of the game mechanics necessary for certification on tour guide training context. The certification matrix has as reference axes: skills, knowledge and competencies, which describe what the students should learn, understand and be able to do after they complete the learning process. The guides-interpreters welcome and accompany tourists on trips and visits to places of tourist interest and cultural heritage such as museums, palaces and national monuments, where they provide various information. Tour guide certification requirements include skills and specific knowledge about foreign languages and in the areas of History, Ethnology, Politics, Religion, Geography and Art of the territory where it is inserted. These skills are communication, interpersonal relationships, motivation, organization and management. This certification process aims to validate the skills to plan and conduct guided tours on the territory, demonstrate knowledge appropriate to the context and finally match a good group leader. After defining which competences are to be certified, the next step is to delineate the expected learning outcomes, as well as identify the game mechanics associated with it. The game mechanics, as methods invoked by agents for interaction with the game world, in combination with game elements/objects allows multiple paths through which to explore the game environment and its educational process. Mechanics as achievements, appointments, progression, reward schedules or status, describe how game can be designed to affect players in unprecedented ways. In order for the game to be able to certify tour guides, the design of the training game will incorporate a set of theoretical and practical tasks to acquire skills and knowledge of various transversal themes. For this end, patterns of skills and abilities in acquiring different knowledge will be identified.
Resumo:
More than ever, the economic globalization is creating the need to increase business competitiveness. Lean manufacturing is a management philosophy oriented to the elimination of activities that do not create any type of value and are thus considered a waste. One of the main differences from other management philosophies is the shop-floor focus and the operators' involvement. Therefore, the training of all organization levels is crucial for the success of lean manufacturing. Universities should also participate actively in this process by developing students' lean management skills and promoting a better and faster integration of students into their future organizations. This paper proposes a single realistic manufacturing platform, involving production and assembly operations, to learn by playing many of the lean tools such as VSM, 5S, SMED, poke-yoke, line balance, TPM, Mizusumashi, plant layout, and JIT/kanban. This simulation game was built in tight cooperation with experienced lean companies under the international program “Lean Learning Academy,”http://www.leanlearningacademy.eu/ and its main aim is to make bachelor and master courses in applied sciences more attractive by integrating classic lectures with a simulated production environment that could result in more motivated students and higher study yields. The simulation game results show that our approach is efficient in providing a realistic platform for the effective learning of lean principles, tools, and mindset, which can be easily included in course classes of less than two hours.
Resumo:
On-chip debug (OCD) features are frequently available in modern microprocessors. Their contribution to shorten the time-to-market justifies the industry investment in this area, where a number of competing or complementary proposals are available or under development, e.g. NEXUS, CJTAG, IJTAG. The controllability and observability features provided by OCD infrastructures provide a valuable toolbox that can be used well beyond the debugging arena, improving the return on investment rate by diluting its cost across a wider spectrum of application areas. This paper discusses the use of OCD features for validating fault tolerant architectures, and in particular the efficiency of various fault injection methods provided by enhanced OCD infrastructures. The reference data for our comparative study was captured on a workbench comprising the 32-bit Freescale MPC-565 microprocessor, an iSYSTEM IC3000 debugger (iTracePro version) and the Winidea 2005 debugging package. All enhanced OCD infrastructures were implemented in VHDL and the results were obtained by simulation within the same fault injection environment. The focus of this paper is on the comparative analysis of the experimental results obtained for various OCD configurations and debugging scenarios.
Resumo:
No presente trabalho procura-se evidenciar algumas soluções para aplicação de simulação estocástica num contexto de gestão dos ativos, aplicado a um sistema de abastecimento de água, tirando partido da informação disponível sobre a manutenção que vem realizando, ao longo dos anos. Procura-se também descrever como estas metodologias podem ser aplicadas noutros casos, futuramente, beneficiando ainda da recolha de informação de colaboradores da empresa, com experiência no cargo e com elevado conhecimento do funcionamento das infraestruturas. A simulação estocástica é uma área cujas ferramentas podem dar uma preciosa ajuda no processo de tomada de decisão. Por outro lado, as organizações preocupam-se, cada vez mais, com o tema da gestão de ativos e com os custos a si associados, começando a investir mais tempo e dinheiro nessa matéria com o objetivo de delinearem estratégias para aumentar o período de vida útil dos seus ativos e otimizarem os seus investimentos de renovação. Nesse contexto, evidencia-se que um adequado plano de intervenções de manutenção e operação é uma boa metodologia, para garantir a redução de falhas no sistema de abastecimento de uma empresa desse setor, bem como garantir que as infraestruturas se encontram em condições de funcionamento. Contudo, esta abordagem tradicional não será suficiente para garantir as melhores práticas e os objetivos que se pretendem alcançar com uma gestão de ativos atual. O trabalho inclui, ainda, um estudo de caso com que se aplicaram as ferramentas estudadas a um caso real de um grupo de bombagem, de uma das Estações Elevatórias da empresa.
Resumo:
A distributed, agent-based intelligent system models and simulates a smart grid using physical players and computationally simulated agents. The proposed system can assess the impact of demand response programs.
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
This study analysed 22 strawberry and soil samples after their collection over the course of 2 years to compare the residue profiles from organic farming with integrated pest management practices in Portugal. For sample preparation, we used the citrate-buffered version of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. We applied three different methods for analysis: (1) 27 pesticides were targeted using LC-MS/MS; (2) 143 were targeted using low pressure GC-tandem mass spectrometry (LP-GC-MS/MS); and (3) more than 600 pesticides were screened in a targeted and untargeted approach using comprehensive, two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS). Comparison was made of the analyses using the different methods for the shared samples. The results were similar, thereby providing satisfactory confirmation of both similarly positive and negative findings. No pesticides were found in the organic-farmed samples. In samples from integrated pest management practices, nine pesticides were determined and confirmed to be present, ranging from 2 μg kg−1 for fluazifop-pbutyl to 50 μg kg−1 for fenpropathrin. Concentrations of residues in strawberries were less than European maximum residue limits.
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.
Resumo:
Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in very helpful sophisticated tools. This paper presents a new methodology for the management of coalitions in electricity markets. This approach is tested using the multi-agent market simulator MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), taking advantage of its ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market and internally, with their members in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. A case study using real data from the Iberian Electricity Market is performed to validate and illustrate the proposed approach.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff.
Resumo:
The dynamism and ongoing changes that the electricity markets sector is constantly suffering, enhanced by the huge increase in competitiveness, create the need of using simulation platforms to support operators, regulators, and the involved players in understanding and dealing with this complex environment. This paper presents an enhanced electricity market simulator, based on multi-agent technology, which provides an advanced simulation framework for the study of real electricity markets operation, and the interactions between the involved players. MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) uses real data for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations bring to different countries. Also, the development of an upper-ontology to support the communication between participating agents, provides the means for the integration of this simulator with other frameworks, such as MAN-REM (Multi-Agent Negotiation and Risk Management in Electricity Markets). A case study using the enhanced simulation platform that results from the integration of several systems and different tools is presented, with a scenario based on real data, simulating the MIBEL electricity market environment, and comparing the simulation performance with the real electricity market results.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.