60 resultados para INTELLIGENT BUILDING
Resumo:
Nowadays computing technology research is focused on the development of Smart Environments. Following that line of thought several Smart Rooms projects were developed and their appliances are very diversified. The appliances include projects in the context of workplace or everyday living, entertainment, play and education. These appliances envisage to acquire and apply knowledge about the environment state in order to reason about it so as to define a desired state for its inhabitants and perform adaptation adaptation to these desires and therefore improving their involvement and satisfaction with that environment.
Resumo:
The idea behind creating this special issue on real world applications of intelligent tutoring systems was to bring together in a single publication some of the most important examples of success in the use of ITS technology. This will serve as a reference to all researchers working in the area. It will also be an important resource for the industry, showing the maturity of ITS technology and creating an atmosphere for funding new ITS projects. Simultaneously, it will be valuable to academic groups, motivating students for new ideas of ITS and promoting new academic research work in the area.
Resumo:
This paper presents the proposal of an architecture for developing systems that interact with Ambient Intelligence (AmI) environments. This architecture has been proposed as a consequence of a methodology for the inclusion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Systems Research for Ambient Intelligence). The ISyRAmI architecture considers several modules. The first is related with the acquisition of data, information and even knowledge. This data/information knowledge deals with our AmI environment and can be acquired in different ways (from raw sensors, from the web, from experts). The second module is related with the storage, conversion, and handling of the data/information knowledge. It is understood that incorrectness, incompleteness, and uncertainty are present in the data/information/knowledge. The third module is related with the intelligent operation on the data/information/knowledge of our AmI environment. Here we include knowledge discovery systems, expert systems, planning, multi-agent systems, simulation, optimization, etc. The last module is related with the actuation in the AmI environment, by means of automation, robots, intelligent agents and users.
Resumo:
In the work of Paul Auster (Newark, 1947 - ), we find two main themes: the sense of loss and existential drift and the loneliness of the individual fully committed to the work of writing, as if he had been confined to the book that commands his life. However, this second theme is clearly the dominant one because the character's space of solitude may include its own wandering, because this wandering is also often performed inside the four walls of a room, just like it is narrated inside the space of the page and the book. Both in his poetry, essays and fiction, Auster seems to face the work of writing as an actual physical effort of effective construction, as if the words that are aligned in the poem-text were stones to place in a row when building a wall or some other structure in stone.
Resumo:
As more and more digital resources are available, finding the appropriate document becomes harder. Thus, a new kind of tools, able to recommend the more appropriated resources according the user needs, becomes even more necessary. The current project implements an intelligent recommendation system for elearning platforms. The recommendations are based on one hand, the performance of the user during the training process and on the other hand, the requests made by the user in the form of search queries. All information necessary for decision-making process of recommendation will be represented in the user model. This model will be updated throughout the target user interaction with the platform.
Resumo:
This paper aims to present a contrastive approach between three different ways of building concepts after proving the similar syntactic possibilities that coexist in terms. However, from the semantic point of view we can see that each language family has a different distribution in meaning. But the most important point we try to show is that the differences found in the psychological process when communicating concepts should guide the translator and the terminologist in the target text production and the terminology planning process. Differences between languages in the information transmission process are due to the different roles the different types of knowledge play. We distinguish here the analytic-descriptive knowledge and the analogical knowledge among others. We also state that none of them is the best when determining the correctness of a term, but there has to be adequacy criteria in the selection process. This concept building or term building success is important when looking at the linguistic map of the information society.
Resumo:
A indústria da construção, nomeadamente no sector da edificação, baseia-se essencialmente em métodos de construção tradicional. Esta indústria é caracterizada pelo consumo excessivo de matérias-primas, de recursos energéticos não renováveis e pela elevada produção de resíduos. Esta realidade é de todo incompatível com os desígnios do desenvolvimento sustentável, nos quais se procura a conveniência harmoniosa entre as dimensões ambiental, social e económica. O desafio da sustentabilidade, colocado à actividade da construção, tem motivado abordagens distintas, não só por parte das várias especialidades da engenharia, como também da arquitectura. É nesta perspectiva, que o presente modelo pretende ser um contributo para uma abordagem inovadora, introduzindo linhas de intervenção e de orientação, para apoiar e estimular o desenvolvimento de soluções sustentáveis em edifícios habitacionais, em qualquer fase do ciclo de evolução de um projecto e das várias especialidades do mesmo. Assim, no sentido de optimizar os recursos envolvidos no projecto são expostas estratégias de intervenção, com os seguintes objectivos: optimização do potencial do local, preservação da identidade regional e cultural, minimização do consumo de energia, utilização de materiais e produtos de baixo impacto ambiental, redução do consumo de água, redução da produção de emissões, resíduos e outros poluentes, adequada qualidade do ambiente interior e optimização das fases de operação e manutenção. A ferramenta apresentada surge como um instrumento facilitador para a equipa de projectistas, e que se esta adaptada para o desenvolvimento de projectos de edifícios de habitação, dada a génese dos métodos utilizados. As soluções de sustentabilidade apresentadas neste manual emanam dos sistemas de certificação LíderA, LEED, BREEAM e SBToolpt. O modelo encontra-se estruturado, no que às fases de projecto diz respeito, de acordo com os requisitos expressos na Portaria 701-H/2008 de 29 de Julho, tendo sido igualmente seguido o descrito para os respectivos intervenientes.
Resumo:
Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.
Resumo:
This paper focuses on evaluating the usability of an Intelligent Wheelchair (IW) in both real and simulated environments. The wheelchair is controlled at a high-level by a flexible multimodal interface, using voice commands, facial expressions, head movements and joystick as its main inputs. A Quasi-experimental design was applied including a deterministic sample with a questionnaire that enabled to apply the System Usability Scale. The subjects were divided in two independent samples: 46 individuals performing the experiment with an Intelligent Wheelchair in a simulated environment (28 using different commands in a sequential way and 18 with the liberty to choose the command); 12 individuals performing the experiment with a real IW. The main conclusion achieved by this study is that the usability of the Intelligent Wheelchair in a real environment is higher than in the simulated environment. However there were not statistical evidences to affirm that there are differences between the real and simulated wheelchairs in terms of safety and control. Also, most of users considered the multimodal way of driving the wheelchair very practical and satisfactory. Thus, it may be concluded that the multimodal interfaces enables very easy and safe control of the IW both in simulated and real environments.
Resumo:
For industrial environments it is true that Ethernet technologies are there to stay. In fact, a number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor applications. Fullduplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional field bus networks? Fieldbus fundamentalists often argue that the two things are not comparable. In fact, Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. Where are the higher layers and the application enablers that permit building real industrial applications? And, taking for free that they are available, what is the impact of those protocols, mechanisms and application models on the overall performance of Ethernet-based distributed factory-floor applications?
Resumo:
Managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). The physical parameters of the data center (such as power, temperature, pressure, humidity) are tightly coupled with computations, even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in a cloud infrastructure hosted in the data center. In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolutionof the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center andwith them, _and opportunities to optimize energy consumption. Havinga high resolution picture of the data center conditions, also enables minimizing local hotspots, perform more accurate predictive maintenance (pending failures in cooling and other infrastructure equipment can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.
Resumo:
Most of today’s embedded systems are required to work in dynamic environments, where the characteristics of the computational load cannot always be predicted in advance. Furthermore, resource needs are usually data dependent and vary over time. Resource constrained devices may need to cooperate with neighbour nodes in order to fulfil those requirements and handle stringent non-functional constraints. This paper describes a framework that facilitates the distribution of resource intensive services across a community of nodes, forming temporary coalitions for a cooperative QoSaware execution. The increasing need to tailor provided service to each application’s specific needs determines the dynamic selection of peers to form such a coalition. The system is able to react to load variations, degrading its performance in a controlled fashion if needed. Isolation between different services is achieved by guaranteeing a minimal service quality to accepted services and by an efficient overload control that considers the challenges and opportunities of dynamic distributed embedded systems.
Resumo:
This paper describes the environmental monitoring / regatta beacon buoy under development at the Laboratory of Autonomous Systems (LSA) of the Polytechnic Institute of Porto. On the one hand, environmentalmonitoring of open water bodies in real or deferred time is essential to assess and make sensible decisions and, on the other hand, the broadcast in real time of position, water and wind related parameters allows autonomous boats to optimise their regatta performance. This proposal, rather than restraining the boats autonomy, fosters the development of intelligent behaviour by allowing the boats to focus on regatta strategy and tactics. The Nautical and Telemetric Application (NAUTA) buoy is a dual mode reconfigurable system that includes communications, control, data logging, sensing, storage and power subsystems. In environmental monitoring mode, the buoy gathers and stores data from several underwater and above water sensors and, in regatta mode, the buoy becomes an active course mark for the autonomous sailing boats in the vicinity. During a race, the buoy broadcasts its position, together with the wind and the water current local conditions, allowing autonomous boats to navigate towards and round the mark successfully. This project started with the specification of the requirements of the dual mode operation, followed by the design and building of the buoy structure. The research is currently focussed on the development of the modular, reconfigurable, open source-based control system. The NAUTA buoy is innovative, extensible and optimises the on board platform resources.
Resumo:
Environmental management is a complex task. The amount and heterogeneity of the data needed for an environmental decision making tool is overwhelming without adequate database systems and innovative methodologies. As far as data management, data interaction and data processing is concerned we here propose the use of a Geographical Information System (GIS) whilst for the decision making we suggest a Multi-Agent System (MAS) architecture. With the adoption of a GIS we hope to provide a complementary coexistence between heterogeneous data sets, a correct data structure, a good storage capacity and a friendly user’s interface. By choosing a distributed architecture such as a Multi-Agent System, where each agent is a semi-autonomous Expert System with the necessary skills to cooperate with the others in order to solve a given task, we hope to ensure a dynamic problem decomposition and to achieve a better performance compared with standard monolithical architectures. Finally, and in view of the partial, imprecise, and ever changing character of information available for decision making, Belief Revision capabilities are added to the system. Our aim is to present and discuss an intelligent environmental management system capable of suggesting the more appropriate land-use actions based on the existing spatial and non-spatial constraints.