40 resultados para Hybrid Amazon fish
Resumo:
The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed generators, storage units, demand response and EVs. The large number of resources causes more complexity in the energy resource management, taking several hours to reach the optimal solution which requires a quick solution for the next day. Therefore, it is necessary to use adequate optimization techniques to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA version, resulting in a cost reduction of 1.94%. For this scenario, the proposed approach is approximately 94 times faster than the deterministic approach.
Resumo:
A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.
Resumo:
This work presents and analyses the fat and fuel properties and the methyl ester profile of biodiesel from animal fats and fish oil (beef tallow, pork lard, chicken fat and sardine oil). Also, their sustainability is evaluated in comparison with rapeseed biodiesel and fossil diesel, currently the dominant liquid fuels for transportation in Europe. Results show that from a technological point of view it is possible to use animal fats and fish oil as feedstock for biodiesel production. From the sustainability perspective, beef tallow biodiesel seems to be the most sustainable one, as its contribution to global warming has the same value of fossil diesel and in terms of energy efficiency it has the best value of the biodiesels under consideration. Although biodiesel is not so energy efficient as fossil diesel there is room to improve it, for example, by replacing the fossil energy used in the process with renewable energy generated using co-products (e.g. straw, biomass cake, glycerine).
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required.
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
This work presents a hybrid maneuver for gradient search with multiple AUV's. The mission consists in following a gradient field in order to locate the source of a hydrothermal vent or underwater freshwater source. The formation gradient search exploits the environment structuring by the phenomena to be studied. The ingredients for coordination are the payload data collected by each vehicle and their knowledge of the behaviour of other vehicles and detected formation distortions.
Resumo:
Die Luftverschmutzung, die globale Erwärmung sowie die Verknappung der endlichen Ressourcen sind die größten Bedenken der vergangenen Jahrzehnte. Die Nachfrage nach jeglicher Mobilität steigt rapide. Dementsprechend bemüht ist die Automobilindustrie Lösungen für Mobilität unter dem Aspekt der Nachhaltigkeit und dem Umweltschutz anzubieten. Die Elektrifizierung hat sich hierbei als der beste Weg herausgestellt, um die Umweltprobleme sowie die Abhängigkeit von fossilen Brennstoffen zu lösen. Diese Arbeit soll einen Einblick über die Umweltauswirkungen des Hybridfahrzeuges Toyota Prius geben. Hierbei findet eine Gliederung in vier verschiedene Lebensphasen statt. Im Anschluss bietet die Sachbilanz die Möglichkeit die Umweltauswirkungen mit verschiedenen Antriebsmöglichkeiten und Brennstoffen zu vergleichen. Das Modell hat gezeigt, dass der Toyota Prius während der Nutzung einen hohen Einfluss auf das Treibhauspotenzial aufweist. Durch die Nutzung anderer Brennstoffe, wie beispielsweise Ethanol oder Methanol lassen sich die Auswirkungen am Treibhauspotenzial sowie der Verbrauch an abiotischen Ressourcen reduzieren. Vergleicht man die Elektromobilität mit der konventionellen, so ist festzustellen, dass diese Art der Mobilität die derzeit beste Möglichkeit zur Reduzierung der Umweltbelastungen bietet. Die Auswirkungen der Elektromobilität sind im hohen Maße abhängig von der Art des verwendeten Strommixes.
Resumo:
A vitamin E extraction method for rainbow trout flesh was optimized, validated, and applied in fish fed commercial and Gracilaria vermiculophylla-supplemented diets. Five extraction methods were compared. Vitamers were analyzed by HPLC/DAD/fluorescence. A solid-liquid extraction with n-hexane, which showed the best performance, was optimized and validated. Among the eight vitamers, only α- and γ-tocopherol were detected in muscle samples. The final method showed good linearity (>0.999), intra- (<3.1%) and inter-day precision (<2.6%), and recoveries (>96%). Detection and quantification limits were 39.9 and 121.0 ng/g of muscle, for α-tocopherol, and 111.4 ng/g and 337.6 ng/g, for γ-tocopherol, respectively. Compared to the control group, the dietary inclusion of 5% G. vermiculophylla resulted in a slight reduction of lipids in muscle and, consequently, of α- and γ-tocopherol. Nevertheless, vitamin E profile in lipids was maintained. In general, the results may be explained by the lower vitamin E level in seaweed-containing diet. Practical Applications: Based on the validation results and the low solvent consumption, the developed method can be used to analyze vitamin E in rainbow trout. The results of this work are also a valuable information source for fish feed industries and aquaculture producers, which can focus on improving seaweed inclusion in feeds as a source of vitamin E in fish muscle and, therefore, take full advantage of all bioactive components with an important role in fish health and flesh quality.
Resumo:
Studies on microbial characterization of cold-smoked salmon and salmon trout during cold storage were performed on samples available in the Portuguese market. Samples were also classified microbiologically according to guidelines for ready-to-eat (RTE) products. Further investigations on sample variability and microbial abilities to produce tyramine and histamine were also performed. The coefficient of variation for viable counts of different groups of microorganisms of samples collected at retail market point was high in the first 2 wk of storage, mainly in the Enterobacteriaceae group and aerobic plate count (APC), suggesting that microbiological characteristics of samples were different in numbers, even within the same batch from the same producer. This variation seemed to be decreased when storage and temperature were controlled under lab conditions. The numbers of Enterobacteriaceae were influenced by storage temperature, as indicated by low microbial numbers in samples from controlled refrigeration. Lactic acid bacteria (LAB) and Enterobacteriaceae were predominant in commercial products, a significant percentage of which were tyramine and less histamine producers. These results might be influenced by (1) the technological processes in the early stages of production, (2) contamination during the smoking process, and (3) conditions and temperature fluctuations during cold storage at retail market point of sale.