51 resultados para Evolutionary algorithm, Parameter identification, rolling element bearings, Genetic algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho, realizado no âmbito da unidade curricular de Tese/Dissertação, procura mostrar de que forma a Computação Evolucionária se pode aplicar no mundo da Música. Este é, de resto, um tema sobejamente aliciante dentro da área da Inteligência Artificial. Começa-se por apresentar o mundo da Música com uma perspetiva cronológica da sua história, dando especial relevo ao estilo musical do Fado de Coimbra. Abordam-se também os conceitos fundamentais da teoria musical. Relativamente à Computação Evolucionária, expõem-se os elementos associados aos Algoritmos Evolucionários e apresentam-se os principais modelos, nomeadamente os Algoritmos Genéticos. Ainda no âmbito da Computação Evolucionária, foi elaborado um pequeno estudo do “estado da arte” da aplicação da Computação Evolucionária na Música. A implementação prática deste trabalho baseia-se numa aplicação – AG Fado – que compõe melodias de Fado de Coimbra, utilizando Algoritmos Genéticos. O trabalho foi dividido em duas partes principais: a primeira parte consiste na recolha de informações e posterior levantamento de dados estatísticos sobre o género musical escolhido, nomeadamente fados em tonalidade maior e fados em tonalidade menor; a segunda parte consiste no desenvolvimento da aplicação, com a conceção do respetivo algoritmo genético para composição de melodias. As melodias obtidas através da aplicação desenvolvida são bastante audíveis e boas melodicamente. No entanto, destaca-se o facto de a avaliação ser efetuada por seres humanos o que implica sensibilidades musicais distintas levando a resultados igualmente distintos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The friction torque and the operating temperatures in a thrust ball bearing were measured for seven different types of greases, including three biodegradable greases having low toxicity. These friction torque tests were performed using a modified Four-Ball machine. Rheological evaluations of the lubricating greases were made using a rheometer. Bleed oils were extracted from the greases and the dynamic viscosities were measured. In order to compare the performance of the lubricant greases in terms of friction, the grease characteristics were related to experimental results, showing that the interaction between thickener and base oil have strong influences in the bearing friction torque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of finding several different solutions with the same optimum performance in single objective real-world engineering problems. In this paper a parallel robot design is proposed. Thereby, this paper presents a genetic algorithm to optimize uni-objective problems with an infinite number of optimal solutions. The algorithm uses the maximin concept and ε-dominance to promote diversity over the admissible space. The performance of the proposed algorithm is analyzed with three well-known test functions and a function obtained from practical real-world engineering optimization problems. A spreading analysis is performed showing that the solutions drawn by the algorithm are well dispersed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms have been investigated in the last years. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. In this case the trajectory planning is formulated as an optimization problem with constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thrust ball bearings lubricated with several different greases were tested on a modified Four-Ball Machine, where the Four-Ball arrangement was replaced by a bearing assembly. The friction torque and operating temperatures in a thrust ball bearing were measured during the tests. At the end of each test a grease sample was analyzed through ferrographic techniques in order to quantify and evaluate bearing wear. A rolling bearing friction torque model was used and the coefficient of friction in full film lubrication was determined for each grease, depending on the operating conditions. The experimental results obtained showed that grease formulation had a very significant influence on friction torque and operating temperature. The friction torque depends on the viscosity of the grease base oil, on its nature (mineral, ester, PAO, etc.), on the coefficient of friction in full film conditions, but also on the interaction between grease thickener and base oil, which affected contact replenishment and contact starvation, and thus influenced the friction torque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) agents interacting locally with their environment cause coherent functional global patterns to emerge. Particle swarm optimization (PSO) is a form of SI, and a population-based search algorithm that is initialized with a population of random solutions, called particles. These particles are flying through hyperspace and have two essential reasoning capabilities: their memory of their own best position and knowledge of the swarm's best position. In a PSO scheme each particle flies through the search space with a velocity that is adjusted dynamically according with its historical behavior. Therefore, the particles have a tendency to fly towards the best search area along the search process. This work proposes a PSO based algorithm for logic circuit synthesis. The results show the statistical characteristics of this algorithm with respect to number of generations required to achieve the solutions. It is also presented a comparison with other two Evolutionary Algorithms, namely Genetic and Memetic Algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. The results are compared with a genetic algorithm that adopts the direct kinematics. In both cases the trajectory planning is formulated as an optimization problem with constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.