45 resultados para Distributed Denial of Service
Resumo:
Real-time embedded applications require to process large amounts of data within small time windows. Parallelize and distribute workloads adaptively is suitable solution for computational demanding applications. The purpose of the Parallel Real-Time Framework for distributed adaptive embedded systems is to guarantee local and distributed processing of real-time applications. This work identifies some promising research directions for parallel/distributed real-time embedded applications.
Resumo:
Smartphones and other internet enabled devices are now common on our everyday life, thus unsurprisingly a current trend is to adapt desktop PC applications to execute on them. However, since most of these applications have quality of service (QoS) requirements, their execution on resource-constrained mobile devices presents several challenges. One solution to support more stringent applications is to offload some of the applications’ services to surrogate devices nearby. Therefore, in this paper, we propose an adaptable offloading mechanism which takes into account the QoS requirements of the application being executed (particularly its real-time requirements), whilst allowing offloading services to several surrogate nodes. We also present how the proposed computing model can be implemented in an Android environment
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This technical report tackles the hidden-node problem in WSNs and proposes HNAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this technical report will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol.
Resumo:
The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This paper tackles the hiddennode problem in WSNs and proposes H-NAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this paper will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.
Resumo:
The international Electrotechnical Commission (IEC) 61499 architecture incorporated several function block with which distributed control application may be developed, and how these are interpreted and executed. However, due the distributed nature of the control applications, many issues also need to be taken into account. Most of these are due to the new error model and failure modes of the distributed hardware on which the distributed application is executed and also due the incomplete standards definition of the execution models. IEC 61499 frameworks does not clarify how to handle with replication of software and hardware components. In this paper we propose a replication model for IEC 61499 applications and which mechanisms and protocols may be used for their support.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização de Telecomunicações
Resumo:
Consolidation consists in scheduling multiple virtual machines onto fewer servers in order to improve resource utilization and to reduce operational costs due to power consumption. However, virtualization technologies do not offer performance isolation, causing applications’ slowdown. In this work, we propose a performance enforcing mechanism, composed of a slowdown estimator, and a interference- and power-aware scheduling algorithm. The slowdown estimator determines, based on noisy slowdown data samples obtained from state-of-the-art slowdown meters, if tasks will complete within their deadlines, invoking the scheduling algorithm if needed. When invoked, the scheduling algorithm builds performance and power aware virtual clusters to successfully execute the tasks. We conduct simulations injecting synthetic jobs which characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our strategy can be efficiently integrated with state-of-the-art slowdown meters to fulfil contracted SLAs in real-world environments, while reducing operational costs in about 12%.
Resumo:
The current ubiquitous network access and increase in network bandwidth are driving the sales of mobile location-aware user devices and, consequently, the development of context-aware applications, namely location-based services. The goal of this project is to provide consumers of location-based services with a richer end-user experience by means of service composition, personalization, device adaptation and continuity of service. Our approach relies on a multi-agent system composed of proxy agents that act as mediators and providers of personalization meta-services, device adaptation and continuity of service for consumers of pre-existing location-based services. These proxy agents, which have Web services interfaces to ensure a high level of interoperability, perform service composition and take in consideration the preferences of the users, the limitations of the user devices, making the usage of different types of devices seamless for the end-user. To validate and evaluate the performance of this approach, use cases were defined, tests were conducted and results gathered which demonstrated that the initial goals were successfully fulfilled.
Resumo:
Relatório de Estágio Apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Empreendedorismo e Internacionalização, sob orientação da Mestre Inês Veiga Pereira
Resumo:
As the wireless cellular market reaches competitive levels never seen before, network operators need to focus on maintaining Quality of Service (QoS) a main priority if they wish to attract new subscribers while keeping existing customers satisfied. Speech Quality as perceived by the end user is one major example of a characteristic in constant need of maintenance and improvement. It is in this topic that this Master Thesis project fits in. Making use of an intrusive method of speech quality evaluation, as a means to further study and characterize the performance of speech codecs in second-generation (2G) and third-generation (3G) technologies. Trying to find further correlation between codecs with similar bit rates, along with the exploration of certain transmission parameters which may aid in the assessment of speech quality. Due to some limitations concerning the audio analyzer equipment that was to be employed, a different system for recording the test samples was sought out. Although the new designed system is not standard, after extensive testing and optimization of the system's parameters, final results were found reliable and satisfactory. Tests include a set of high and low bit rate codecs for both 2G and 3G, where values were compared and analysed, leading to the outcome that 3G speech codecs perform better, under the approximately same conditions, when compared with 2G. Reinforcing the idea that 3G is, with no doubt, the best choice if the costumer looks for the best possible listening speech quality. Regarding the transmission parameters chosen for the experiment, the Receiver Quality (RxQual) and Received Energy per Chip to the Power Density Ratio (Ec/N0), these were subject to speech quality correlation tests. Final results of RxQual were compared to those of prior studies from different researchers and, are considered to be of important relevance. Leading to the confirmation of RxQual as a reliable indicator of speech quality. As for Ec/N0, it is not possible to state it as a speech quality indicator however, it shows clear thresholds for which the MOS values decrease significantly. The studied transmission parameters show that they can be used not only for network management purposes but, at the same time, give an expected idea to the communications engineer (or technician) of the end-to-end speech quality consequences. With the conclusion of the work new ideas for future studies come to mind. Considering that the fourth-generation (4G) cellular technologies are now beginning to take an important place in the global market, as the first all-IP network structure, it seems of great relevance that 4G speech quality should be subject of evaluation. Comparing it to 3G, not only in narrowband but also adding wideband scenarios with the most recent standard objective method of speech quality assessment, POLQA. Also, new data found on Ec/N0 tests, justifies further research studies with the intention of validating the assumptions made in this work.
Resumo:
Este documento descreve um modelo de tolerância a falhas para sistemas de tempo-real distribuídos. A sugestão deste modelo tem como propósito a apresentação de uma solu-ção fiável, flexível e adaptável às necessidades dos sistemas de tempo-real distribuídos. A tolerância a falhas é um aspeto extremamente importante na construção de sistemas de tempo-real e a sua aplicação traz inúmeros benefícios. Um design orientado para a to-lerância a falhas contribui para um melhor desempenho do sistema através do melhora-mento de aspetos chave como a segurança, a confiabilidade e a disponibilidade dos sis-temas. O trabalho desenvolvido centra-se na prevenção, deteção e tolerância a falhas de tipo ló-gicas (software) e físicas (hardware) e assenta numa arquitetura maioritariamente basea-da no tempo, conjugada com técnicas de redundância. O modelo preocupa-se com a efi-ciência e os custos de execução. Para isso utilizam-se também técnicas tradicionais de to-lerância a falhas, como a redundância e a migração, no sentido de não prejudicar o tempo de execução do serviço, ou seja, diminuindo o tempo de recuperação das réplicas, em ca-so de ocorrência de falhas. Neste trabalho são propostas heurísticas de baixa complexida-de para tempo-de-execução, a fim de se determinar para onde replicar os componentes que constituem o software de tempo-real e de negociá-los num mecanismo de coordena-ção por licitações. Este trabalho adapta e estende alguns algoritmos que fornecem solu-ções ainda que interrompidos. Estes algoritmos são referidos em trabalhos de investiga-ção relacionados, e são utilizados para formação de coligações entre nós coadjuvantes. O modelo proposto colmata as falhas através de técnicas de replicação ativa, tanto virtual como física, com blocos de execução concorrentes. Tenta-se melhorar ou manter a sua qualidade produzida, praticamente sem introduzir overhead de informação significativo no sistema. O modelo certifica-se que as máquinas escolhidas, para as quais os agentes migrarão, melhoram iterativamente os níveis de qualidade de serviço fornecida aos com-ponentes, em função das disponibilidades das respetivas máquinas. Caso a nova configu-ração de qualidade seja rentável para a qualidade geral do serviço, é feito um esforço no sentido de receber novos componentes em detrimento da qualidade dos já hospedados localmente. Os nós que cooperam na coligação maximizam o número de execuções para-lelas entre componentes paralelos que compõem o serviço, com o intuito de reduzir atra-sos de execução. O desenvolvimento desta tese conduziu ao modelo proposto e aos resultados apresenta-dos e foi genuinamente suportado por levantamentos bibliográficos de trabalhos de in-vestigação e desenvolvimento, literaturas e preliminares matemáticos. O trabalho tem também como base uma lista de referências bibliográficas.
Resumo:
Real-time monitoring applications may be used in a wireless sensor network (WSN) and may generate packet flows with strict quality of service requirements in terms of delay, jitter, or packet loss. When strict delays are imposed from source to destination, the packets must be delivered at the destination within an end-to-end delay (EED) hard limit in order to be considered useful. Since the WSN nodes are scarce both in processing and energy resources, it is desirable that they only transport useful data, as this contributes to enhance the overall network performance and to improve energy efficiency. In this paper, we propose a novel cross-layer admission control (CLAC) mechanism to enhance the network performance and increase energy efficiency of a WSN, by avoiding the transmission of potentially useless packets. The CLAC mechanism uses an estimation technique to preview packets EED, and decides to forward a packet only if it is expected to meet the EED deadline defined by the application, dropping it otherwise. The results obtained show that CLAC enhances the network performance by increasing the useful packet delivery ratio in high network loads and improves the energy efficiency in every network load.