46 resultados para Deterministic partially self-avoiding walk
Resumo:
This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.
Resumo:
The interest in the development of climbing robots is growing rapidly. Motivations are typically to increase the operation efficiency by obviating the costly assembly of scaffolding or to protect human health and safety in hazardous tasks. Climbing robots are starting to be developed for applications ranging from cleaning to inspection of difficult to reach constructions. These robots should be capable of travelling on different types of surfaces, with varying inclinations, such as floors, walls, ceilings, and to walk between such surfaces. Furthermore, these machines should be capable of adapting and reconfiguring for various environment conditions and to be self-contained. Regarding the adhesion to the surface, they should be able to produce a secure gripping force using a light-weight mechanism. This paper presents a survey of different applications and technologies proposed for the implementation of climbing robots.
Resumo:
The new generations of SRAM-based FPGA (field programmable gate array) devices are the preferred choice for the implementation of reconfigurable computing platforms intended to accelerate processing in real-time systems. However, FPGA's vulnerability to hard and soft errors is a major weakness to robust configurable system design. In this paper, a novel built-in self-healing (BISH) methodology, based on run-time self-reconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the dynamic reconfiguration features offered by new FPGA families. Meanwhile, modular redundancy assures that the system still works correctly
Resumo:
Dynamically reconfigurable systems have benefited from a new class of FPGAs recently introduced into the market, which allow partial and dynamic reconfiguration at run-time, enabling multiple independent functions from different applications to share the same device, swapping resources as needed. When the sequence of tasks to be performed is not predictable, resource allocation decisions have to be made on-line, fragmenting the FPGA logic space. A rearrangement may be necessary to get enough contiguous space to efficiently implement incoming functions, to avoid spreading their components and, as a result, degrading their performance. This paper presents a novel active replication mechanism for configurable logic blocks (CLBs), able to implement on-line rearrangements, defragmenting the available FPGA resources without disturbing those functions that are currently running.
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.
Resumo:
Current Manufacturing Systems challenges due to international economic crisis, market globalization and e-business trends, incites the development of intelligent systems to support decision making, which allows managers to concentrate on high-level tasks management while improving decision response and effectiveness towards manufacturing agility. This paper presents a novel negotiation mechanism for dynamic scheduling based on social and collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term for several computational techniques, which use ideas and inspiration from the social behaviors of insects and other biological systems. This work is primarily concerned with negotiation, where multiple self-interested agents can reach agreement over the exchange of operations on competitive resources. Experimental analysis was performed in order to validate the influence of negotiation mechanism in the system performance and the SI technique. Empirical results and statistical evidence illustrate that the negotiation mechanism influence significantly the overall system performance and the effectiveness of Artificial Bee Colony for makespan minimization and on the machine occupation maximization.
Resumo:
Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Among the Cyanoprokaryota, the genera Synechocystis and Synechococcus have rarely been studied with respect to potential toxicity. This is particularly true with marine environments where studies about the toxicity of cyanobacteria are restricted to filamentous forms at the warmer temperate and tropical regions and also to filamentous forms at cold seas such as the Baltic Sea. In this study, we describe the effects of cyanobacterial strains of the Synechocystis and Synechococcus genera isolated from the marine coast of Portugal, on marine invertebrates. Crude and partially purified extracts at a concentration of 100 mg/ml of freeze-dried material of the marine strains were tested for acute toxicity in nauplii of the brine shrimp Artemia salina, in the rotifer Brachionus plicatillis and in embryos of the sea urchin Paracentrotus lividus and the mussel Mytilus galloprovincialis. The cyanobacterial extracts, especially the crude extract, had an impact on A. salina nauplii. No significant toxic effects were registered against the rotifer. A negative impact of all strains was recorded on the embryonic development of the sea urchin, with toxic effects resulting in an inhibition of embryogenesis or development of smaller larvae. To the mussel embryos, the effects of cyanobacterial extracts resulted in a complete inhibition of embryogenesis. The results of all assays indicate that Synechocystis and Synechococcus marine strains contained toxic compounds to marine invertebrates.
Resumo:
6th Real-Time Scheduling Open Problems Seminar (RTSOPS 2015), Lund, Sweden.
Resumo:
Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
Resumo:
Advances in technology have produced more and more intricate industrial systems, such as nuclear power plants, chemical centers and petroleum platforms. Such complex plants exhibit multiple interactions among smaller units and human operators, rising potentially disastrous failure, which can propagate across subsystem boundaries. This paper analyzes industrial accident data-series in the perspective of statistical physics and dynamical systems. Global data is collected from the Emergency Events Database (EM-DAT) during the time period from year 1903 up to 2012. The statistical distributions of the number of fatalities caused by industrial accidents reveal Power Law (PL) behavior. We analyze the evolution of the PL parameters over time and observe a remarkable increment in the PL exponent during the last years. PL behavior allows prediction by extrapolation over a wide range of scales. In a complementary line of thought, we compare the data using appropriate indices and use different visualization techniques to correlate and to extract relationships among industrial accident events. This study contributes to better understand the complexity of modern industrial accidents and their ruling principles.
Resumo:
Background Musicians are frequently affected by playing-related musculoskeletal disorders (PRMD). Common solutions used by Western medicine to treat musculoskeletal pain include rehabilitation programs and drugs, but their results are sometimes disappointing. Objective To study the effects of self-administered exercises based on Tuina techniques on the pain intensity caused by PRMD of professional orchestra musicians, using numeric visual scale (NVS). Design, setting, participants and interventions We performed a prospective, controlled, single-blinded, randomized study with musicians suffering from PRMD. Participating musicians were randomly distributed into the experimental (n = 39) and the control (n = 30) groups. After an individual diagnostic assessment, specific Tuina self-administered exercises were developed and taught to the participants. Musicians were instructed to repeat the exercises every day for 3 weeks. Main outcome measures Pain intensity was measured by NVS before the intervention and after 1, 3, 5, 10, 15 and 20 d of treatment. The procedure was the same for the control group, however the Tuina exercises were executed in points away from the commonly-used acupuncture points. Results In the treatment group, but not the control group, pain intensity was significantly reduced on days 1, 3, 5, 10, 15 and 20. Conclusion The results obtained are consistent with the hypothesis that self-administered exercises based on Tuina techniques could help professional musicians controlling the pain caused by PRMD. Although our results are very promising, further studies are needed employing a larger sample size and double blinding designs.
Resumo:
The complexity of systems is considered an obstacle to the progress of the IT industry. Autonomic computing is presented as the alternative to cope with the growing complexity. It is a holistic approach, in which the systems are able to configure, heal, optimize, and protect by themselves. Web-based applications are an example of systems where the complexity is high. The number of components, their interoperability, and workload variations are factors that may lead to performance failures or unavailability scenarios. The occurrence of these scenarios affects the revenue and reputation of businesses that rely on these types of applications. In this article, we present a self-healing framework for Web-based applications (SHõWA). SHõWA is composed by several modules, which monitor the application, analyze the data to detect and pinpoint anomalies, and execute recovery actions autonomously. The monitoring is done by a small aspect-oriented programming agent. This agent does not require changes to the application source code and includes adaptive and selective algorithms to regulate the level of monitoring. The anomalies are detected and pinpointed by means of statistical correlation. The data analysis detects changes in the server response time and analyzes if those changes are correlated with the workload or are due to a performance anomaly. In the presence of per- formance anomalies, the data analysis pinpoints the anomaly. Upon the pinpointing of anomalies, SHõWA executes a recovery procedure. We also present a study about the detection and localization of anomalies, the accuracy of the data analysis, and the performance impact induced by SHõWA. Two benchmarking applications, exercised through dynamic workloads, and different types of anomaly were considered in the study. The results reveal that (1) the capacity of SHõWA to detect and pinpoint anomalies while the number of end users affected is low; (2) SHõWA was able to detect anomalies without raising any false alarm; and (3) SHõWA does not induce a significant performance overhead (throughput was affected in less than 1%, and the response time delay was no more than 2 milliseconds).